Problem 5.25 The current source $i_s(t)$ in the circuit of Fig. P5.25 generates a train of pulses (waveform #3 in Table 5-4) with A = 6 mA, $\tau = 1 \mu s$, and $T = 10 \mu s$.

- (a) Derive the Fourier series representation of i(t).
- (b) Calculate the first five terms of i(t) using $R = 1 \text{ k}\Omega$, L = 1 mH, and $C = 1 \mu\text{F}$.
- (c) Plot i(t) and $i_s(t)$ using $n_{\text{max}} = 100$.

Solution:

(a) The train of pulses can be presented as

$$i_{\rm s}(t) = \frac{A\tau}{T} + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right) \cos\left(\frac{2n\pi t}{T}\right)$$

so that $\omega_0 = \frac{2\pi}{T} = 2\pi \times 10^5$ rad/s.

$$a_0 = \frac{A\tau}{T} = \frac{6 \times 10^{-3} \times 1 \times 10^{-6}}{10 \times 10^{-6}} = 6 \times 10^{-4}$$
$$a_n = \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right)$$
$$b_n = 0$$

So in phasor domain

$$A_n \angle \frac{\phi_n}{n} = a_n - jb_n = \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right)$$

Hence

$$\mathbf{I}_{\rm s} = \frac{A\tau}{T} + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right)$$

Next we calculate the transfer function

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{\mathbf{I}(\boldsymbol{\omega})}{\mathbf{I}_{s}(\boldsymbol{\omega})} \,.$$

An equivalent circuit can be used to derive the expression for $H(\omega)$. Based on the Norton theorem, the circuit in P5.24 becomes

where $\mathbf{V}_{s} = \mathbf{I}_{s} \mathbf{R}$.

$$\therefore \mathbf{I} = \frac{\mathbf{V}_{s}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{R}{R + j\omega L + \frac{1}{j\omega C}} \mathbf{I}_{s}$$

$$\therefore \mathbf{H}(\omega) = \frac{\mathbf{I}}{\mathbf{I}_{s}}$$

$$= \frac{j\omega CR}{j\omega CR - \omega^{2}LC + 1}$$

$$= \frac{j\omega CR}{(1 - \omega^{2}LC) + j\omega CR}$$

$$= \frac{\omega CR}{\sqrt{(1 - \omega^{2}LC)^{2} + (\omega CR)^{2}}} \exp\left\{j\left[90^{\circ} - \tan^{-1}\left(\frac{\omega CR}{1 - \omega^{2}LC}\right)\right]\right\}$$

Multiplying $\mathbf{H}(n\boldsymbol{\omega}_0)$ with phasor representation of \mathbf{I}_s

•
$$\mathbf{I}(\boldsymbol{\omega}) = \frac{A\tau}{T} \mathbf{H}(\boldsymbol{\omega} = 0) + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right) \mathbf{H}(n\omega_0)$$

Note: $H(\omega = 0) = 0$.

$$\mathbf{I}(\boldsymbol{\omega}) = \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right) \frac{n\omega_0 CR}{\sqrt{(1-n^2\omega_0^2 LC)^2 + n^2\omega_0^2 (CR)^2}} \exp\left[j90^\circ - j\tan^{-1}\left(\frac{n\omega_0 CR}{1-n^2\omega_0^2 LC}\right)\right]$$

In time domain

$$i(t) = \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right) \frac{n\omega_0 CR}{\sqrt{(1 - n^2\omega_0^2 LC)^2 + n^2\omega_0^2 (CR)^2}} \cos\left[n\omega_0 t + 90^\circ - \tan^{-1}\left(\frac{n\omega_0 CR}{1 - n^2\omega_0^2 LC}\right)\right]$$

(b) Substituting for $R = 1 \text{ k}\Omega$, L = 1 mH, $C = 1 \mu\text{F}$. The first five terms of i(t) are:

$$n = 1 \implies 0.0010 \cos(\omega_0 t - 32^\circ)$$

$$n = 2 \implies 6.9928 \times 10^{-4} \cos(2\omega_0 t - 51.5^\circ)$$

$$n = 3 \implies 4.8285 \times 10^{-4} \cos(3\omega_0 t - 62^\circ)$$

$$n = 4 \implies 3.358 \times 10^{-4} \cos(4\omega_0 t - 68.3^\circ)$$

$$n = 5 \implies 2.3174 \times 10^{-4} \cos(5\omega_0 t - 72.3^\circ)$$

(c)

