Problem 5.25 The current source $i_{\mathrm{s}}(t)$ in the circuit of Fig. P5.25 generates a train of pulses (waveform \#3 in Table 5-4) with $A=6 \mathrm{~mA}, \tau=1 \mu \mathrm{~s}$, and $T=10 \mu \mathrm{~s}$.


Figure P5.25: Circuit for Problem 5.25.
(a) Derive the Fourier series representation of $i(t)$.
(b) Calculate the first five terms of $i(t)$ using $R=1 \mathrm{k} \Omega, L=1 \mathrm{mH}$, and $C=1 \mu \mathrm{~F}$.
(c) Plot $i(t)$ and $i_{\mathrm{s}}(t)$ using $n_{\max }=100$.

## Solution:


(a) The train of pulses can be presented as

$$
i_{\mathrm{s}}(t)=\frac{A \tau}{T}+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \cos \left(\frac{2 n \pi t}{T}\right)
$$

so that $\omega_{0}=\frac{2 \pi}{T}=2 \pi \times 10^{5} \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
& a_{0}=\frac{A \tau}{T}=\frac{6 \times 10^{-3} \times 1 \times 10^{-6}}{10 \times 10^{-6}}=6 \times 10^{-4} \\
& a_{n}=\frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \\
& b_{n}=0
\end{aligned}
$$

So in phasor domain

$$
A_{n} \angle \phi_{n}=a_{n}-j b_{n}=\frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right)
$$

Hence

$$
\mathbf{I}_{\mathrm{s}}=\frac{A \tau}{T}+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right)
$$

Next we calculate the transfer function

$$
\mathbf{H}(\omega)=\frac{\mathbf{I}(\omega)}{\mathbf{I}_{\mathrm{s}}(\omega)}
$$

An equivalent circuit can be used to derive the expression for $H(\omega)$. Based on the Norton theorem, the circuit in P5.24 becomes

where $\mathbf{V}_{\mathrm{s}}=\mathbf{I}_{\mathrm{s}} R$.

$$
\begin{aligned}
\therefore \quad \mathbf{I} & =\frac{\mathbf{V}_{\mathrm{s}}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{R}{R+j \omega L+\frac{1}{j \omega C}} \mathbf{I}_{\mathrm{s}} \\
\therefore \quad \mathbf{H}(\omega) & =\frac{\mathbf{I}}{\mathbf{I}_{\mathrm{s}}} \\
& =\frac{j \omega C R}{j \omega C R-\omega^{2} L C+1} \\
& =\frac{j \omega C R}{\left(1-\omega^{2} L C\right)+j \omega C R} \\
& =\frac{\omega C R}{\sqrt{\left(1-\omega^{2} L C\right)^{2}+(\omega C R)^{2}}} \exp \left\{j\left[90^{\circ}-\tan ^{-1}\left(\frac{\omega C R}{1-\omega^{2} L C}\right)\right]\right\}
\end{aligned}
$$

Multiplying $\mathbf{H}\left(n \omega_{0}\right)$ with phasor representation of $\mathbf{I}_{s}$

$$
\Rightarrow \mathbf{I}(\omega)=\frac{A \tau}{T} \mathbf{H}(\omega=0)+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \mathbf{H}\left(n \omega_{0}\right)
$$

Note: $\mathbf{H}(\omega=0)=0$.

$$
\mathbf{I}(\omega)=\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \frac{n \omega_{0} C R}{\sqrt{\left(1-n^{2} \omega_{0}^{2} L C\right)^{2}+n^{2} \omega_{0}^{2}(C R)^{2}}} \exp \left[j 90^{\circ}-j \tan ^{-1}\left(\frac{n \omega_{0} C R}{1-n^{2} \omega_{0}^{2} L C}\right)\right]
$$

In time domain

$$
i(t)=\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \frac{n \omega_{0} C R}{\sqrt{\left(1-n^{2} \omega_{0}^{2} L C\right)^{2}+n^{2} \omega_{0}^{2}(C R)^{2}}} \cos \left[n \omega_{0} t+90^{\circ}-\tan ^{-1}\left(\frac{n \omega_{0} C R}{1-n^{2} \omega_{0}^{2} L C}\right)\right]
$$

(b) Substituting for $R=1 \mathrm{k} \Omega, L=1 \mathrm{mH}, C=1 \mu \mathrm{~F}$. The first five terms of $i(t)$ are:

$$
\begin{aligned}
& n=1 \Rightarrow 0.0010 \cos \left(\omega_{0} t-32^{\circ}\right) \\
& n=2 \Rightarrow 6.9928 \times 10^{-4} \cos \left(2 \omega_{0} t-51.5^{\circ}\right) \\
& n=3 \Rightarrow 4.8285 \times 10^{-4} \cos \left(3 \omega_{0} t-62^{\circ}\right) \\
& n=4 \Rightarrow 3.358 \times 10^{-4} \cos \left(4 \omega_{0} t-68.3^{\circ}\right) \\
& n=5 \Rightarrow 2.3174 \times 10^{-4} \cos \left(5 \omega_{0} t-72.3^{\circ}\right)
\end{aligned}
$$

(c)


