Problem 6.17 For the circuit shown in Fig. P6.17 provide the following:
(a) An expression for $\mathbf{H}(\omega)=\mathbf{V}_{\mathrm{o}} / \mathbf{V}_{\mathrm{i}}$ in standard form.
(b) Spectral plots for the magnitude and phase of $\mathbf{H}(\omega)$, given that $R=10 \Omega$, $L=1 \mathrm{mH}$, and $C=10 \mu \mathrm{~F}$.
(c) The cutoff frequency $\omega_{\mathrm{c}}$ and the slope of the magnitude (in dB ) when $\omega / \omega_{c} \ll 1$.


Figure P6.17: Circuit for Problem 6.17.

## Solution:

(a) Voltage division yields

$$
\begin{aligned}
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{i}}} & =\frac{(R \| j \omega L)}{1 / j \omega C+(R \| j \omega L)} \\
& =\frac{-\omega^{2} L C}{1+j \omega L / R+j^{2} \omega^{2} L C} \\
& =\frac{-\left(\omega / \omega_{\mathrm{c}}\right)^{2}}{1+j 2 \xi \omega / \omega_{\mathrm{c}}+\left(j \omega / \omega_{\mathrm{c}}\right)^{2}},
\end{aligned}
$$

with

$$
\omega_{\mathrm{c}}=\frac{1}{\sqrt{L C}}, \quad \xi=\frac{\omega_{\mathrm{c}} L}{2 R} .
$$

(b) For $R=10 \Omega, L=1 \mathrm{mH}$, and $C=10 \mu \mathrm{~F}$,

$$
\omega_{\mathrm{c}}=10^{4} \mathrm{rad} / \mathrm{s}, \quad \xi=0.5 .
$$

Spectral plots of $M[\mathrm{~dB}]$ and $\phi(\omega)$ are shown in Figs. P6.17(a) and (b).


Figures P6.17(a) and (b)
(c) For $\omega / \omega_{\mathrm{c}} \ll 1$,

$$
\mathbf{H}(\omega) \approx-\left(\frac{\omega}{\omega_{\mathrm{c}}}\right)^{2} \quad \Longrightarrow \quad \text { slope }=+40 \mathrm{~dB} / \text { decade }
$$

