Problem 6.24 For the op-amp circuit of Fig. P6.24 provide the following:
(a) An expression for $\mathbf{H}(\omega)=\mathbf{V}_{\mathrm{o}} / \mathbf{V}_{\mathrm{s}}$ in standard form.
(b) Spectral plots for the magnitude and phase of $\mathbf{H}(\omega)$, given that $R_{1}=1 \mathrm{k} \Omega$, $R_{2}=20 \Omega, C_{1}=5 \mu \mathrm{~F}$, and $C_{2}=25 \mathrm{nF}$.
(c) What type of filter is it? What is its maximum gain?

Figure P6.24: Circuit for Problem 6.24.

Solution: This is basically an inverting amplifier with a transfer function given by

$$
\begin{aligned}
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{s}}}=-\frac{\mathbf{Z}_{\mathrm{f}}}{\mathbf{Z}_{\mathrm{s}}} & =\frac{-\left(R_{2} \| 1 / j \omega C_{2}\right)}{R_{1}+1 / j \omega C_{1}} \\
& =\frac{-j \omega R_{2} C_{1}}{\left(1+j \omega R_{1} C_{1}\right)\left(1+j \omega R_{2} C_{2}\right)} \\
& =\frac{-j\left(\omega / \omega_{\mathrm{c}_{1}}\right)}{\left(1+j \omega / \omega_{\mathrm{c}_{2}}\right)\left(1+j \omega / \omega_{\mathrm{c}_{3}}\right)},
\end{aligned}
$$

with

$$
\begin{aligned}
& \omega_{\mathrm{c}_{1}}=\frac{1}{R_{2} C_{1}}=\frac{1}{20 \times 5 \times 10^{-6}}=10^{4} \mathrm{rad} / \mathrm{s}, \\
& \omega_{\mathrm{c}_{2}}=\frac{1}{R_{1} C_{1}}=\frac{1}{10^{3} \times 5 \times 10^{-6}}=200 \mathrm{rad} / \mathrm{s}, \\
& \omega_{\mathrm{c}_{3}}=\frac{1}{R_{2} C_{2}}=\frac{1}{20 \times 25 \times 10^{-9}}=2 \times 10^{6} \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

(b) Spectral plots are shown in Figs. P6.24(a) and (b).

Figures P6.24(a) and (b)
(c) This is a bandpass filter with corner frequencies of $200 \mathrm{rad} / \mathrm{s}$ and $10^{6} \mathrm{rad} / \mathrm{s}$. In the intermediate range, its maximum gain is approximately

$$
G \approx 20 \log \left(\frac{R_{2}}{R_{1}}\right)=20 \log 0.02=-34 \mathrm{~dB} .
$$

