Concept Question 3-7: When evaluating the expansion coefficients of a function containing repeated poles, is it more practical to start by evaluating the coefficient of the fraction with the lowest-order pole or that with the highest-order pole? Why?

Highest order. See the procedure below:

Repeated Real Poles

Expansion coefficients B_1 to B_m are determined through a procedure that involves multiplication by $(\mathbf{s} - p)^m$, differentiation with respect to \mathbf{s} , and evaluation at $\mathbf{s} = p$:

$$B_{j} = \left\{ \frac{1}{(m-j)!} \frac{d^{m-j}}{d\mathbf{s}^{m-j}} [(\mathbf{s} - p)^{m} \mathbf{X}(\mathbf{s})] \right\} \Big|_{\mathbf{s} = p},$$
$$j = 1, 2, \dots, m. \tag{3.71}$$

For the m, m - 1, and m - 2 terms, Eq. (3.71) reduces to

$$B_m = (\mathbf{s} - p)^m \mathbf{X}(\mathbf{s})|_{\mathbf{s} = p}, \tag{3.72a}$$

$$B_{m-1} = \left. \left\{ \frac{d}{d\mathbf{s}} \left[(\mathbf{s} - p)^m \ \mathbf{X}(\mathbf{s}) \right] \right\} \right|_{\mathbf{s} = p}, \tag{3.72b}$$

$$B_{m-2} = \left\{ \frac{1}{2!} \frac{d^2}{ds^2} [(s-p)^m \mathbf{X}(s)] \right\} \Big|_{s=p}.$$
 (3.72c)