Example 4-6: Car Driving Over a Curb.
Purpose:
For the biomechanical model, compute and plot the head's vertical velocity as a function of time, in response to the car going over a curb 1 cm in height. Assume $m_{1}=8.164 \mathrm{~kg}, m_{2}=11.953$ $\mathrm{kg}, m_{3}=11.654 \mathrm{~kg}, m_{4}=5.018 \mathrm{~kg}$ (representing average values for an adult human being) and $b_{i}=90 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$ and $k_{i}=3500 \mathrm{~N} / \mathrm{m}$ for $i=1,2,3$.

Inputs:
M1, M2, M3, M4=model masses in kg . $\mathrm{B}=$ model damping constant in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m} . \mathrm{K}=$ model spring constant in N / m.

Output:
$\mathrm{Y}=$ vertical velocity of head in m / s.

Comments:

- This is the only program that does not work using the Mathscript program included on the DVD. It requires MATLAB and MATLAB's Symbolic Toolbox.
- Note that M1 does not affect the output; it is attached directly to the input.

Program:

```
clear;syms s;
M1=8.164;M2=11.953;
M3=11.654;M4=5.018;
B=90;K=3500; E=B+K/s;
%Use formulae from the text.
%Form 3X3 system matrix:
A=[M2*S+2*E, -E, 0] ;
A=[A;-E,M3*S+2*E,-E];
A=[A;0,-E,M4*S+E];
B=[E;0;0];V=A\B;V4=V(3);
%Convert symbolic solution
%to non-symbolic solution:
[N,D]=numden(V4);
N=sym2poly(N);
D=sym2poly(D);
[R P]=residue(N,D);
t=linspace(0,5,1000);
Y=0.01*real (R.''*exp (P*t));
subplot(211), plot(t,Y)
```

