Example 8-15: DFT Computation of Fourier series.

Purpose:
At a sampling rate of 50 sample/s, the number of samples generated by a periodic signal with period $T_{0}=0.2 \mathrm{~s}$ and $f_{\text {max }}=25 \mathrm{~Hz}$ is $N=f_{s} T_{0}=50 \times 0.2=10$ samples. Compute the Fourier-series coefficients of $x(t)$, given its sampled values: $\{\underline{9}, 0.117,-5.195,1.859,11.53,9,-4.585,-12.8,-5.75,6.827\}$.

Inputs:
$\mathrm{X}=$ samples of one period of signal.
$\mathrm{fs}=$ sampling rate in sample per s .

Outputs:

Line spectrum of $x(t)$ computed using DFT.

Figure 1: DFT-computed line spectrum.

Comments:

- A stem plot is used since the spectrum is computed only at discrete points.
- fftshift is used to shift dc $(\Omega=0)$ to the middle of the two-sided spectrum.

Program:

```
clear;fs=50;P=0.2;
t=[0:1/fs:P-1/fs];L=P*fs;
X=1+4*sin}(2*\textrm{pi}*5*\textrm{t})
X=X+10*cos(2*pi*10*t+0.6435);
f=[-(L/2):(L/2-1)]*fs/L;
FX=fft(X)/L;subplot(211),
stem(f,fftshift(abs(FX))),grid on
```

