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Exercise 1-1 If signal y(t) is obtained from x(t) by applying the transformation y(t) = x(−4t−8), determine
the values of the transformation parameters a and T .

Solution: From Eq. (1.5), y(t) = x(at−b) = x(a(t− b
a)) = x(a(t−T )) where T = b

a .

Here, y(t) = x(−4t−8) = x(−4(t +2)), so a =−4 and T =−2.
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Exercise 1-2 If x(t) = t3 and y(t) = 8t3, are x(t) and y(t) related by a transformation?

Solution: Yes, since x(2t) = (2t)3 = 8t3 = y(t).

Even though y(t) = 8x(t), this is not a transformation as defined in Section 1-2.
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Exercise 1-3 What types of transformations connect x(t) = 4t to y(t) = 2(t +4)?

Solution: Let y(t) = x(a(t−T )) for a time-scaling transformation with factor a and a time-shift transformation
with a time delay of T .

Since x(t) = 4t, we have y(t) = 4[a(t−T )] = 4at−4aT . We want y(t) = 2(t +4) = 2t +8.

So 4a = 2 and −4aT = 8. This yields a = 1
2 and T =−4.

Then

y(t) = x(a(t−T )) = x
(

1
2
(t +4)

)
= x
( t

2
+2
)
.

Even though y(t) = 2x(t)+8, this is not a transformation as defined in Section 1-2.
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Exercise 1-4 Which of the following functions have even-symmetrical waveforms, odd-symmetrical
waveforms, or neither? (a) x1(t) = 3t2, (b) x2(t) = sin(2t), (c) x3(t) = sin2(2t), (d) x4(t) = 4e−t , (e)
x5(t) = |cos2t|.

Solution: A function x(t) has an even-symmetrical waveform if x(−t) = x(t). It is symmetric about the vertical
axis.

A function x(t) has an odd-symmetrical waveform if x(−t) =−x(t). Reflecting an odd-symmetric function
about the vertical axis, then about the horizontal axis (or vice-versa), leaves it unaltered.

(a) x1(−t) = 3(−t)2 = 3t2 = x1(t), so x1(t) has an even-symmetrical waveform.

(b) x2(−t) = sin(−2t) =−sin(2t) =−x2(t),

so x2(t) has an odd-symmetrical waveform.

(c) x3(−t) = sin2(−2t) = (−sin(2t))2 = sin2(2t) = x3(t),

so x3(t) has an even-symmetrical waveform.

(d) x4(−t) = 4et 6=±x4(t), so the waveform of x4(t) has no symmetry.

(e) x5(−t) = |cos(−2t)|= |cos(2t)|= x5(t),

so x5(t) has an even-symmetrical waveform.

Note that cos(2t) also has an even-symmetrical waveform.
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Exercise 1-5 Express the waveforms shown in Fig. E1-5 in terms of unit step functions.

Figure E1-5

Solution: See Fig. E1-5(a); (a) is shown in the left column; (b) is shown in the right column.
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(a) x(t) starts at 0, jumps to 10 at t = 0, stays there until t = 2. Hence, x(t) = 10u(t) for t < 2.
x(t) drops from 10 to –10 at t = 2, stays until t = 4. Hence, x(t) = 10u(t)−20u(t−2) for t < 4.
x(t) jumps from –10 to 0 at t = 4 and stays. FINAL:

x(t) = 10u(t)−20u(t−2)+10u(t−4).

(b) x(t) starts at 0, increases with slope 5
2 = 2.5 until t = 2. Hence, x(t) = 2.5r(t) for t < 2.

x(t) drops 5 to −5 at t = 2, then increases with slope 2.5. x(t) = 2.5r(t)−10u(t−2) for t < 4.
x(t) levels off at 0 at t = 4. FINAL:

x(t) = 2.5r(t)−10u(t−2)−2.5r(t−4).
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Exercise 1-6 How is u(t) related to u(−t)?

Solution: u(−t) is simply u(t) reflected about the vertical axis. So

u(t) and u(−t) are mirror images of one another.

This is true for any function x(t), not just u(t).
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Exercise 1-7 If x(t) is the rectangular pulse shown in Fig. E1-7(a), determine its time derivative x′(t) and
plot it.

Solution: In Fig. E1-7(a), x(t) = 2u(t−3)−2u(t−4). From Eq. (1.25a),

d
dt

[u(t−T )] = δ (t−T ).

So

x′(t) =
dx
dt

=
d
dt

[2u(t−3)−2u(t−4)] = 2δ (t−3)−2δ (t−4).
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Exercise 1-8 The radioactive decay equation for a certain material is given by n(t) = n0e−t/τ , where n0 is
the initial count at t = 0. If τ = 2×108 s, how long is its half-life?

Solution: The half-life is the time t1/2 at which

n(t1/2)

n(0)
=

1
2
.

So t1/2 solves
1
2
=

n(t1/2)

n(0)
= e−t1/2/2×108

.

Solving this equation gives t1/2 =−(2×108) log
(1

2

)
= 1.386×108 s≈ 4 years.
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Exercise 1-9 If the current i(t) through a resistor R decays exponentially with a time constant τ , what is the
ratio of the power dissipated in the resistor at time t = τ to its value at t = 0?

Solution: The current is i(t) = i(0) e−t/τ . The power is p(t) = i2(t) R = i2(0) Re−2t/τ . So p(0) = i2(0) R.
The ratio of powers is

p(τ)
p(0)

=
i2(0) Re−2τ/τ

i2(0) R
= e−2 = 0.135.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 1-10 Determine the values of Pav and E for a pulse signal given by

x(t) = 5 rect
(

t−3
4

)
.

Solution: x(t) =

{
5 for 1 < t < 5,
0 otherwise.

So

E =
∫

∞

−∞

|x(t)|2 dt =
∫ 5

1
|5|2 dt = 100.

Since E is finite, Pav = 0.

Note that E is invariant to time shifts, so we could have used

E =
∫ 2

−2
|5|2 dt = 100.
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Exercise 2-1 Does the system y(t) = x2(t) have the scaling property?

Solution: The scaling property of a system is:

If x(t) SYSTEM y(t),

then c x(t) SYSTEM c y(t)

for any constant c.
The response to [c x(t)] is the output [c x(t)]2 = c2 x2(t) = c2 y(t) 6= c y(t).

So the system does not have the scaling property.
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Exercise 2-2 Which of the following systems is linear?

(a) y1(t) = |sin(3t)| x(t).

(b) y2(t) = a dx
dt .

(c) y3(t) = |x(t)|.

(d) y4(t) = sin[x(t)].

Solution: A system is linear if it has both the scaling property and the additivity property. The scaling property
is:

If x(t) SYSTEM y(t),

then c x(t) SYSTEM c y(t)

for any constant c. The additivity property is:

If x1(t) SYSTEM y1(t)

and x2(t) SYSTEM y2(t),

then [x1(t)+ x2(t)] SYSTEM [y1(t)+ y2(t)].

(a) The system is y(t) = |sin(3t)| x(t).
The response to [cx(t)] is the output |sin(3t)|[c x(t)] = c|sin(3t)| x(t) = c y(t).

So the system has the scaling property.

• x1(t) SYSTEM y1(t) = |sin(3t)| x1(t).

• x2(t) SYSTEM y2(t) = |sin(3t)| x2(t).

• [x1(t)+ x2(t)] SYSTEM |sin(3t)|[x1(t)+ x2(t)].

The response to [x1(t)+ x2(t)] is the output

|sin(3t)|[x1(t)+ x2(t)] = |sin(3t)|x1(t)+ |sin(3t)| x2(t) = y1(t)+ y2(t).

So the system has the additivity property.

Since the system has both the scaling and additivity properties, it is linear.

(b) The system is y(t) = a dx
dt .

The response to [c x(t)] is the output

a
d(cx)

dt
= ac

dx
dt

= c y(t).

So the system has the scaling property.
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• x1(t) SYSTEM y1(t) = a
dx1

dt
.

• x2(t) SYSTEM y2(t) = a
dx2

dt
.

• [x1(t)+ x2(t)] SYSTEM a
d
dt
[x1(t)+ x2(t)].

The response to [x1(t)+ x2(t)] is the output

a
d
dt
[x1(t)+ x2(t)] = a

dx1

dt
+a

dx2

dt
= y1(t)+ y2(t).

So the system has the additivity property.

Since the system has both the scaling and additivity properties, it is linear.

(c) The system is y(t) = |x(t)|.
We show that the system does not have the scaling property.
Trying c =−1 shows that the response to −x(t) is the output

|− x(t)|= |x(t)|= y(t) 6=−y(t).

The system does not have the scaling property. So the system is not linear.

(d) The system is y(t) = sin[x(t)].
We show that the system does not have the scaling property.
Trying c = 2 shows that the response to 2x(t) is the output

sin[2x(t)] 6= 2sin[x(t)] = 2y(t).

The system does not have the scaling property. So the system is not linear.
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Exercise 2-3 Which systems are time-invariant?

(a) y(t) = dx
dt + sin[x(t−1)].

(b) dy
dt = 2sin[x(t−1)]+3cos[x(t−1)]?

Solution: A system is time-invariant if it has the property that:

If x(t) SYSTEM y(t),

then x(t−T ) SYSTEM y(t−T )

for any constant T .

(a) The system is

y(t) =
dx
dt

+ sin[x(t−1)].

The response to x(t−T ) is the output

d(x(t−T ))
dt

+ sin[x(t−T −1)] = y(t−T ).

So the system is time-invariant.

(b) The system is
dy
dt

= 2sin[x(t−1)]+3cos[x(t−1)].

Substituting x(t−T ) for x(t) and y(t−T ) for y(t) gives

dy(t−T )
dt

= 2sin[x(t−T −1)]+3cos[x(t−T −1)],

which is the system with t replaced with t−T .

So the system is time-invariant.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 2-4 Determine the impulse response of a system whose step response is

ystep(t) =


0, t ≤ 0
t, 0≤ t ≤ 1
1, t ≥ 1.

Solution: The impulse response is the derivative of the step response:

h(t) =
dystep

dt
.

For the given ystep(t), we have:

h(t) =
dystep

dt
=



d0
dt

, t ≤ 0

dt
dt

, 0≤ t ≤ 1

d1
dt

, t ≥ 1

=


0, t ≤ 0
1, 0≤ t ≤ 1
0, t ≥ 1

This rectangular pulse can be written succinctly as h(t) = u(t)−u(t−1).
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Exercise 2-5 The RC circuit of Fig. 2-5(a) is excited by x(t) = (1−1000t)[u(t)−u(t−0.001)].

Compute the capacitor voltage y(t) for t > 0.001 s, given that τc = 1 s.

Solution: x(t) is a very short wedge-shaped pulse (Fig. E2-5). Its duration of 0.001 s is much less than τc = 1 s.

So the response y(t) of the RC circuit to x(t) will be, for t > 0.001 s, the same as its response to an impulse
having the same area as the pulse. The area under the wedge-shaped pulse is 1

2(1)(0.001)= 0.0005. The impulse
response of the RC circuit is

h(t) =
1
τc

e−t/τc u(t) = e−t u(t).

So the response y(t) is, for t > 0.001, y(t) = 0.0005e−t u(t).
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Exercise 2-6 Apply graphical convolution to the waveforms of x(t) and h(t) shown in Fig. E2-6 to determine
y(t) = h(t)∗ x(t).

Solution:

x(τ) =

{
4 for 1 < τ < 2
0 otherwise

h(τ) =

{
τ for 0 < τ < 3
0 otherwise

Note that 0 < (t− τ) =⇒ τ < t and (t− τ)< 3 =⇒ (t−3)< τ .

For t ≤ 1: ∫
∞

−∞

x(τ) h(t− τ) dτ = 0

(there is no overlap).
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For 1≤ t ≤ 2: ∫
∞

−∞

x(τ) h(t− τ) dτ =
∫ t

1
4(t− τ) dτ = 2t2−4t +2.

This is the area of the blue triangle in Fig. E2-6(c).

For 2≤ t ≤ 4: ∫
∞

−∞

x(τ)h(t− τ) dτ =
∫ 2

1
4(t− τ) dτ = 4t−6.

This is the area of the blue triangle in Fig. E2-6(d) and Fig. E2-6(e).

For 4≤ t ≤ 5: ∫
∞

−∞

x(τ) h(t− τ) dτ =
∫ 2

t−3
4(t− τ) dτ =−2t2 +8t +10.

For t ≥ 5: ∫
∞

−∞

x(τ) h(t− τ) dτ = 0

(there is no overlap).
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Check: If there are no impulses, the result of a convolution should be a continuous waveform. The above
expressions agree at the endpoints t = 1,2,4,5 of each of the above intervals. The result is plotted in Fig.
E2-6(g). The maximum is y(4) = 10.
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Exercise 2-7 Evaluate u(t)∗δ (t−3)−u(t−4)∗δ (t +1).

Solution: Using convolution property #6 in Table 2-1, u(t)∗δ (t−3) = u(t−3) and u(t)∗δ (t) = u(t).
Then using convolution property #5 with T1 = 4 and T2 =−1, we obtain

u(t−4)∗δ (t +1) = u(t−4+1) = u(t−3).

So

u(t)∗δ (t−3)−u(t−4)∗δ (t +1) = u(t−3)−u(t−3) = 0.
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Exercise 2-8 Evaluate lim
t→∞

[e−3t u(t)∗u(t)].

Solution: Let y(t) = e−3t u(t)∗u(t).
Using convolution property #9 in Table 2-1,

y(t) =
∫ t

−∞

e−3τ u(τ) dτ =
∫ t

0
e−3τ dτ =

1
3
(1− e−3t) u(t).

Then

lim
t→∞

(e−3t u(t)∗u(t)) = lim
t→∞

y(t) =
1
3
.
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Exercise 2-9 A system’s impulse response is h(t) = u(t−1)/t2. Is the system BIBO stable?

Solution: The system is BIBO stable if and only if it is absolutely integrable:∫
∞

−∞

|h(t)| dt

is finite. Here, ∫
∞

−∞

|h(t)| dt =
∫

∞

−∞

∣∣∣∣u(t−1)
t2

∣∣∣∣ dt =
∫

∞

1

dt
t2 =

−1
t

∣∣∣∣∞
1
= 1 < ∞.

So the system is BIBO stable.
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Exercise 2-10 A system’s impulse response is h(t) = u(t−1)/t. Is the system BIBO stable?

Solution: The system is BIBO stable if and only if it is absolutely integrable:∫
∞

−∞

|h(t)| dt

is finite. Here, ∫
∞

−∞

|h(t)| dt =
∫

∞

−∞

∣∣∣∣u(t−1)
t

∣∣∣∣ dt =
∫

∞

1

dt
t
= log(|t|)|∞1 → ∞.

So the system is not BIBO stable.
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Exercise 2-11 A system’s impulse response is

h(t) = (3+ j4)e−(1− j2)t u(t)+(3− j4)e−(1+ j2)t u(t).

Is the system BIBO stable?

Solution: The impulse response has the form

h(t) =
N

∑
i=1

Cieγit u(t).

The system is BIBO stable if and only if all of the exponential coefficients γi in the impulse response have
negative real parts. Here, the real parts of −1+ j2 and −1− j2 are both −1, which is negative.

So the system is BIBO stable.
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Exercise 2-12 cos(t) h(t) = e−tu(t) ?

Solution:

Acos(ωt +φ) Ĥ(ω) |Ĥ(ω)|Acos(ωt +φ +θ)

where θ = ∠ Ĥ(ω). Here, A = 1, ω = 1 rad/s, φ = 0, and the frequency response function Ĥ(ω) is

Ĥ(ω) =
∫

∞

−∞

h(t) e− jωt dt =
∫

∞

0
e−te− jωt dt =

1
jω +1

.

At ω = 1 rad/s,

Ĥ(1) =
1

j1+1
=

1√
2

e− j45◦ .

So the output is 1√
2

cos(t−45◦).
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Exercise 2-13 2cos(t) SYSTEM 2cos(2t)+2. Initial conditions are zero. Is this system LTI?

Solution: No. The response of an LTI system to a sinusoid at a given frequency is another sinusoid at that
same frequency. This is a crucial property of LTI systems.

An LTI system cannot create a sinusoid at a frequency different from that of its input.

This system has created sinusoids at frequencies ω = 0 and ω = 2, so it is not LTI.
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Exercise 2-14 cos(2t) SYSTEM 0. Can we say that the system is not LTI?

Solution: No. An LTI system can eliminate a sinusoid at a given frequency.

An LTI system cannot create a sinusoid at a frequency different from that of its input.
For example, the system could be the LTI system

y(t) =
d2x
dt2 +4x,

since if x(t) = cos(2t), then

y(t) =
d2x
dt2 +4x =−4cos(2t)+4cos(2t) = 0.

But we do not know this.
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Exercise 2-15 Which damping condition is exhibited by h(t) of

d2y
dt2 +5

dy
dt

+4y(t) = 2
dx
dt

.

Solution: The general second-order LCCDE is

d2y
dt2 +a1

dy
dt

+a2 y(t) = b1
dx
dt

+b2 x(t).

We read off a1 = 5 and a2 = 4. Note that b1 = 2 and b2 = 0 are irrelevant as far as the damping condition
is concerned.

Then α = a1/2 = 5/2 = 2.5 s−1, ω0 =
√

a2 =
√

4 = 2 rad/s, and ξ = α/ω0 = 2.5/2 = 1.25.

Since ξ = 1.25 > 1, the system is overdamped.
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Exercise 2-16 For what constant a1 is

d2y
dt2 +a1

dy
dt

+9y(t) = 2
dx
dt

critically damped?

Solution: The general second-order LCCDE is

d2y
dt2 +a1

dy
dt

+a2 y(t) = b1
dx
dt

+b2 x(t).

We read off a2 = 9. Note that b1 = 2 and b2 = 0 are irrelevant here.
Then α = a1/2 and ω0 =

√
a2 =

√
4 = 2 and ξ = α/ω0 = (a1/2)/3 = a1/6.

The system is critically damped if 1 = ξ = a1/6, or a1 = 6.
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Exercise 2-17 Use LabVIEW Module 2.2 to compute the wavy pavement response in Example 2-19 and
shown in Fig. 2-30.

Solution:
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Exercise 3-1 Determine the Laplace transform of (a) [sin(ω0t)] u(t), and (b) r(t−T ) [see ramp function in
Chapter 1].

Solution:
(a) [sinω0t] u(t)

X(s) =
∫

∞

0−
[sinω0t] u(t) e−st dt.

Application of the identity

sinω0t =
e jω0t − e− jω0t

2 j
,

X(s) =
1
2 j

∫
∞

0
e jω0te−st dt− 1

2 j

∫
∞

0
e− jω0te−st dt

=
1
2 j

(
e( jω0−s)t

jω0− s
− e−( jω0+s)t

−( jω0 + s)

)∣∣∣∣∣
∞

0

=
1
2 j

(
−1

jω0− s
+
−1

jω0 + s

)
=

ω0

s2 +ω2
0

.

(b) r(t−T ) = (t−T ) u(t−T )

X(s) =
∫

∞

0−
(t−T ) u(t−T ) e−st dt

=
∫

∞

T
te−st dt−

∫
∞

T
Te−st dt.

Using the integral relation ∫
xeax dx =

eax

a2 (ax−1),

we have

X(s) =
e−st

s2 (−st−1)
∣∣∣∣∞
T
+

T
s

e−st
∣∣∣∣∞
T

= e−sT
(

sT
s2 +

1
s2 −

T
s

)
=

e−sT

s2 .
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Exercise 3-2 Determine the Laplace transform of the causal sawtooth waveform shown in Fig. E3-2
(compare with Example 1-4).

Solution: The sawtooth waveform is given by

x1(t) = 5t[u(t)−u(t−2)] V, for cycle 1,

x(t) =
∞

∑
n=0

5(t−2n)[u(t−2n)−u(t−2(n+1))] V, for all cycles.

Correspondingly,

X̂1(s) =
∫ 2

0
5te−st dt =

5
s2 [1− (2s+1)e−2s],

X̂2(s) =
∫ 4

2
5(t−2)e−st dt.

If we let x = t−2,

X2(s) =
∫ 2

0
5xe−2se−sx dx

= e−2s X1(s).

Similarly, for the mth cycle,
Xm(s) = e−ms X1(s).

Hence,
X(s) = X1(s) (1+ e−2s + e−4s + e−6s + · · ·).

Using the series expansion

1+ x+ x2 + · · ·= 1
1− x

,

we have

X(s) =
X1(s)

1− e−2s

=
5[1− (2s+1)e−2s]

s2(1− e−2s)
.
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Exercise 3-3 Determine the poles and zeros of X(s) = (s+a)/[(s+a)2 +ω2
0 ].

Solution: The zeros are the roots of the numerator polynomial set equal to zero.

(s+a) = 0 z =−a+ j0.

The poles are the roots of the denominator polynomial set equal to zero.

[(s+a)2 +ω2
0 ] = 0 p1 = (−a− jω0) and p2 = (−a+ jω0).
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Exercise 3-4 Determine LLL {[sinω0(t−T )] u(t−T )}.

Solution: According to Exercise 3-1(a),

[sin(ω0t)] u(t)
ω0

s2 +ω2
0
.

Application of the shift property given by Eq. (3.16)

x(t−T ) u(t−T ) e−T s X(s)

leads to

[sinω0(t−T )] u(t−T ) e−T s ω0

s2 +ω2
0
.
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Exercise 3-5 (a) Prove Eq. (3.20) and (b) apply it to determine LLL [e−at cos(ω0t) u(t)].

Solution:
(a) If

x(t) X(s),

then ∫
∞

0−
e−at x(t) e−st dt =

∫
∞

0−
x(t) e−(s+a)t dt

=
∫

∞

0−
x(t) e−s′t dt

= X(s′)

= X(s+a),

where we temporarily used the substitution
s′ = s+a.

Hence,
e−at x(t) X(s+a).

(b) Since
[cosω0t] u(t)

s
s2 +ω2

0
,

it follows that

[e−at cos(ω0t)] u(t)
(s+a)

(s+a)2 +ω2
0
.
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Exercise 3-6 Determine the initial and final values of x(t) if its Laplace transform is given by

X(s) =
s2 +6s+18

s(s+3)2 .

Solution:

x(0+) = lim
s→∞

s X(s)

= lim
s→∞

s2 +6s+18
(s+3)2 = 1,

x(∞) = lim
s→0

s X(s)

= lim
s→∞

s2 +6s+18
(s+3)2 = 2.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 3-7 Obtain the Laplace transform of: (a) x1(t)= 2(2−e−t) u(t) and (b) x2(t) = e−3t cos(2t +30◦) u(t).

Solution:
(a)

x1(t) = 2(2− e−t) u(t)

= (4−2e−t) u(t).

By entries #2 and #3 in Table 3-2,

X1(s) =
4
s
− 2

s+1
=

4s+4−2s
s(s+1)

=
2s+4

s(s+1)
.

(b)

x2(t) = e−3t cos(2t +30◦) u(t)

= e−3t xa(t),

with
xa(t) = cos(2t +20◦) u(t).

Applying entry #12 in Table 3-2 gives

Xa(s) =
scos30◦−2sin30◦

s2 +4
=

0.866s−1
s2 +4

.

Application of property #5 in Table 3-2 leads to

X2(s) = Xa(s+3)

=
0.866(s+3)−1
(s+3)2 +4

=
0.866s+1.6
s2 +6s+13

.
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Exercise 3-8 Apply the partial-fraction expansion method to determine x(t), given that its Laplace transform
is

X(s) =
10s+16

s(s+2)(s+4)
.

Solution: By partial-fraction expansion,

X(s) =
A1

s
+

A2

s+2
+

A3

s+4
,

with

A1 = s X(s)|s=0

=
10s+16

(s+2)(s+4)

∣∣∣∣
s=0

= 2,

A2 = (s+2) X(s)|s=−2

=
10s+16
s(s+4)

∣∣∣∣
s=−2

=
−20+16
−2(2)

= 1,

A3 = (s+4) X(s)|s=−4

=
10s+16
s(s+2)

∣∣∣∣
s=−4

=
−40+16
−4(−2)

=−3.

Hence,

X(s) =
2
s
+

1
s+2

− 3
s+4

,

and

x(t) = [2+ e−2t −3e−4t ] u(t).
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Exercise 3-9 Determine the inverse Laplace transform of

X(s) =
4s2−15s−10

(s+2)3 .

Solution:

X(s) =
4s2−15s−10

(s+2)3 .

By partial-fraction expansion,

X(s) =
B1

s+2
+

B2

(s+2)2 +
B3

(s+2)3 ,

with

B3 = (s+2)3 X(s)
∣∣
s=−2

= 4s2−15s−10
∣∣
s=−2 = 16+30−10 = 36,

B2 =
d
ds

[(s+2)3 X(s)]
∣∣
s=−2

=
d
ds

(4s2−15s−10)
∣∣
s=−2 = 8s−15|s=−2 =−31,

B1 =
1
2

d
ds2 (4s2−15s−10)

∣∣
s=−2 = 4.

Hence,

X(s) =
4

s+2
− 31

(s+2)2 +
36

(s+2)3 .

By entries #3, #6, and #7 in Table 3-2,

x(t) = (4−31t +18t2)e−2t u(t).
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Exercise 3-10 Determine the inverse Laplace transform of

X(s) =
2s+14

s2 +6s+25
.

Solution:

X(s) =
2s+14

s2 +6s+25

=
2s+14

(s+3− j4)(s+3+ j4)
.

By partial fraction expansion

X(s) =
B1

s+3− j4
+

B∗1
s+3+ j4

,

with

B1 = (s+3− j4) X(s)|s=−3+ j4

=
(2s+14)

(s+3+ j4)

∣∣∣∣
s=−3+ j4

=
−6+ j8+14

j8
= 1− j =

√
2 e− j45◦ .

Hence,

X(s) =
√

2 e− j45◦

s+3− j4
+

√
2 e j45◦

s+3+ j4
.

By entry #15 in Table 3-2,

x(t) = [2
√

2 e−3t cos(4t−45◦)] u(t).
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Exercise 3-11 Is the system with transfer function

H(s) =
s+1

(s+ j3)(s− j3)

BIBO stable?

Solution: An LTI system is BIBO stable only if all of its poles are in the left half-plane.
The poles are the roots of the denominator polynomial set equal to zero.
(s+ j3)(s− j3) = 0 p = ± j3. These poles are on the imaginary axis Re[s] = 0, so they are not in the

LHP, and the system is not BIBO stable.
In fact, the response to the (bounded) input x(t) = cos(3t)u(t) is the (unbounded) output

y(t) = 0.167cos(3t−1.5708) u(t)+0.527t cos(3t−0.328) u(t),

which blows up as t→ ∞.
This can be derived as follows:

X(s) =LLL [x(t)] =LLL [cos(3t) u(t)] =
s

s2 +32 =
s

(s+ j3)(s− j3)
.

Then

Y(s) = H(s) X(s) =
s+1

(s− j3)(s+ j3)
s

(s− j3)(s+ j3)

=
s2 + s

(s− j3)2(s+ j3)2 =
s2 + s

s4 +18s2 +81
.

The partial fraction expansion of Y(s) is

Y(s) =
A

s− j3
+

A∗

s+ j3
+

B
(s− j3)2 +

B∗

(s+ j3)2 .

The residues A and B can be computed as follows:

B =
s2 + s

(s+ j3)2(s− j3)2 (s− j3)2|s= j3

=
( j3)2 + j3
( j3+ j3)2 =

−9+ j3
−36

= 0.25− j0.0833,

A =
d
ds

[
s2 + s

(s+ j3)2(s− j3)2 (s− j3)2]|s= j3

=
(s+ j3)2[2s+1]− [s2 + s]2(s+ j3)

(s+ j3)4 |s= j3

=
( j6)2[1+ j6]− [−9+ j3]2( j6)

( j6)4 =− j0.0833.

The residues A and B can also be computed using MATLAB or Mathscript:
[R P]=residue([1 1 0],[1 0 18 0 81]). The output is

R=
-0.0000 - 0.0833i
0.2500 - 0.0833i
-0.0000 + 0.0833i
0.2500 + 0.0833i

P=
-0.0000 + 3.0000i
-0.0000 + 3.0000i
-0.0000 - 3.0000i
-0.0000 - 3.0000i
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Inserting these values,

Y(s) =
− j0.0833

s− j3
+

0.25− j0.0833
(s− j3)2 +

j0.0833
s+ j3

+
0.25+ j0.0833

(s+ j3)2 .

The inverse Laplace transform of Y(s) is

y(t) =− j0.0833e j3t u(t)+(0.25− j0.0833)te j3t u(t)

+ j0.0833e− j3t u(t)+(0.25+ j0.0833)te− j3t u(t).

This can be simplified using the formula

Aept +A∗e−pt = 2|A|epRt cos(pIt +θ),

where p = pR + jpI and A = |A|e jθ .
Here, we set

− j0.08333 = 0.0833e− j1.5708,

0.25− j0.0833 = 0.2635e− j0.3281,

and
p = 0+ j3.

This gives

y(t) = 0.167cos(3t−1.5708) u(t)+0.527t cos(3t−0.328) u(t).
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Exercise 3-12 Is the system with transfer function

H(s) =
(s+1)(s+2)(s+3)

(s+4)(s+5)

BIBO stable?

Solution: An LTI system is BIBO stable only if its transfer function is proper or strictly proper:
The degree of the numerator is equal to or less than the degree of the denominator.
For H(s), the degree of the numerator is 3 and the degree of the denominator is 2.
So the transfer function is improper, and the system is not BIBO stable.
To illustrate, the response to the (bounded) input x(t) = u(t) will include an (unbounded) impulse, since

Y(s) = H(s)X(s) =
(s+1)(s+2)(s+3)

(s+4)(s+5)
1
s
= 1+

0.3
s

+
1.5

s+4
− 4.8

s+5

using MATLAB or Mathscript as follows:

[R P K]=residue(poly([-1 -2 -3]’),poly([0 -4 -5]’).

Then
y(t) =LLL −1[H(s)] = δ (t)+0.3 u(t)+1.5e−4t u(t)−4.8e−5t u(t).

Even though all of the poles are in the left half-plane, the system is not BIBO stable.
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Exercise 3-13 A system has the impulse response

h(t) = δ (t)−2e−3t u(t).

Find its inverse system.

Solution:

H(s) =LLL [h(t)] = 1− 2
s+3

=
s+3
s+3

− 2
s+3

=
s+1
s+3

,

G(s) =
1

H(s)
=

s+3
s+1

= 1+
2

s+1

g(t) =LLL −1[G(s)] = δ (t)+2e−t u(t).
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Exercise 3-14 An LTI system has impulse response h(t) = 3e−tu(t)− 2e−2tu(t). Determine the LCCDE
description.

Solution: First, compute the transfer function H(s):

H(s) =LLL [h(t)] =
3

s+1
s+2
s+2

− 2
s+2

s+1
s+1

=
s+4

(s+1)(s+2)
.

Next, set H(s) = Y(s)
X(s) and cross-multiply:

Y(s)
X(s)

=
s+4

(s+1)(s+2)
Y(s)(s+1)(s+2)

= X(s)(s+4) Y(s)(s2 +3s+2) = X(s)(s+4).

Finally, take the inverse Laplace transform to yield:

d2y
dt2 +3

dy
dt

+2y =
dx
dt

+4x.
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Exercise 3-15 Compute the impulse response of the system described by the LCCDE

d2y
dt2 +5

dy
dt

+4y = 3x.

Solution: Read off the transfer function H(s) from the LCCDE coefficients and compute its partial fraction
expansion:

H(s) =
3

s2 +5s+4
=

1
s+1

− 1
s+4

.

Then

h(t) =LLL −1[H(s)] = e−t u(t)− e−4t u(t).

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 3-16 Compute the poles and modes of the system with LCCDE

d2y
dt2 +3

dy
dt

+2y =
dx
dt

+2x.

Solution: Taking the Laplace transform of the LCCDE gives

Y(s)(s2 +3s+2) = X(s)(s+2).

The modes are the roots of the polynomial multiplying Y(s):
s2 +3s+2 = 0 =⇒{−1,−2} are the modes of the system.
The transfer function is

H(s) =
Y(s)
X(s)

=
s+2

s2 +3s+2
=

s+2
(s+1)(s+2)

=
1

s+1
.

The poles are the roots of the denominator polynomial:
s+1 = 0 =⇒{−1} is the pole of the system. Note {poles} ⊂ {modes}.
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Exercise 3-17 Compute the zero-input response of dy
dt +2y = 3 dx

dt +4x with y(0) = 5.

Solution: For the zero-input response, set x(t) = 0. The LCCDE becomes dy
dt +2y = 0.

This has the general solution y(t) =Ce−2t u(t) for some constant C.

y(0) = 5 =⇒ y(t) = 5e−2tu(t) is the zero-input response.
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Exercise 4-1 Convert the circuit in Fig. E4-1 into the s-domain.

Solution:
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Exercise 4-2 Compute the s-domain impedance of a series RLC circuit with zero initial conditions. Simplify
the expression to a ratio of polynomials.

Solution:
The s-domain impedance of the resistor is ZR(s) = R.
The s-domain impedance of the inductor is ZL(s) = sL.
The s-domain impedance of the capacitor is ZC(s) = 1/(sC).
The impedance of the series connection is the sum of the impedances:

Z(s) = ZR(s)+ZL(s)+ZC(s) = R+ sL+1/(sC) =
s2 + R

L s+ 1
LC

s/L
.
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Exercise 4-3 A mass is connected by a spring to a moving surface. What is its electrical analog?

Solution: The mass becomes a capacitor, the spring an inductor, and the surface a voltage source.
So the electrical analog is a series LC circuit driven by a voltage source, the same as the circuit in Fig. 4-

7(b), but without the resistor.
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Exercise 4-4 What do you expect the impulse response of the system in Exercise 4-3 to be like?

Solution: The impulse response of an LC circuit is

h(t) = Acos
(

t√
LC

+θ

)
u(t)

for some A and θ .
This is a pure oscillation without damping (there is no resistor).
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Exercise 4-5 In the SMD system shown in Fig. E4-5, vx(t) is the input velocity of the platform and vy(t) is
the output velocity of mass m. Draw the equivalent s-domain circuit.

Solution:
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Exercise 4-6 In the SMD system shown in Fig. E4-6, vx(t) is the input velocity of the platform and vy(t) is
the output velocity of mass m. Draw the equivalent s-domain circuit.

Solution:
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Exercise 4-7 What is the amplitude of the head displacement for the person in Example 4-7, if the seat
displacement is x1(t) = 0.02cos(10t) (m)?

Solution:

υ1(t) = dx1/dt

=−0.2sin(10t) = 0.2cos(10t +90◦) (m/s);

υ4(t) = 0.2×4.12cos(10t +90◦−116.1◦)

= 0.824cos(10t−26.1◦) (m/s);

x4(t) =
∫ t

−∞

υ4(τ) dτ = 0.0824sin(10t−26.1◦) (m);

amplitude = 8.24 cm.
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Exercise 4-8 Obtain the transfer function of the op-amp circuit shown in Fig. E4-8.

Solution: The circuit consists of two integrators connected in series.
The transfer function of an integrator op-amp circuit is

H(s) =
−1
sRC

.

So
H(s) =

−1
(4 µF)(5 kΩ)s

−1
(5 µF)(1 MΩ)s

=
10
s2 .
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Exercise 4-9 How many op amps are needed, as a minimum, to implement a system with transfer function
H(s)= b

s+a , where a,b > 0?

Solution: Use the one-pole configuration in Table 4-3 with

a =
1

RfCf

and
b =

1
RiCf

.

Given any value of Cf, set

Ri =
1

bCf

and
Rf =

1
aCf

.

But this implements −b
s+a , not b

s+a .
So we need a second op amp with a gain of (−1) to implement an inverter to get b

s+a .

Hence, we need 2 op amps .
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Exercise 4-10 Using Direct Form II, determine how many integrators are needed to realize the system with
transfer function

H(s) =
2s3 +3s2 +4s+5
s3 +8s2 +7s+6

.

Solution:

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 4-11 What is the minimum value of the feedback factor K needed to stabilize a system with transfer
function

H(s) =
1

(s+3)(s−2)
?

Solution:
H(s) =

1
(s+3)(s−2)

=
1

s2 + s−6
.

The closed-loop transfer function is

Q(s) =
H(s)

1+KH(s)
=

1/(s2 + s−6)
1+K/(s2 + s−6)

=
1

s2 + s−6+K
.

A quadratic polynomial has both of its roots in the open left half-plane (OLHP) if and only if all three

coefficients have the same sign. So we need K > 6.
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Exercise 4-12 What values of K can stabilize a system with transfer function

H(s) =
1

(s−3)(s+2)
?

Solution:
H(s) =

1
(s−3)(s+2)

=
1

s2− s−6
.

The closed-loop transfer function is

Q(s) =
H(s)

1+KH(s)
=

1/(s2− s−6)
1+K/(s2− s−6)

=
1

s2− s−6+K
.

A quadratic polynomial has both of its roots in the open left half-plane (OLHP) if and only if all three
coefficients have the same sign.

The quadratic and linear term coefficients have opposite signs: 1 and −1.
So at least one of its roots is not in the LHP, and the system is unstable.

No value of K can stabilize the system.
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Exercise 4-13 What is the time constant of an oven whose heat capacity is 20 J/◦C and thermal resistance
is 5◦C/W?

Solution: The time constant is

τc =
1
a
= RC = (20 J/◦C)(5◦C/W) = 100 J/W = 100 s.
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Exercise 4-14 What is the closed-loop time constant when feedback with K = 0.04 s−1 is used on the oven
of Exercise 4-13?

Solution: Using Eq. (4.122b), b = a+K = 1
100 +0.04 = 0.05. The closed-loop time constant is 20 s.
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Exercise 4-15 Use LabVIEW Module 4.1 to compute the oven temperature responses shown in Fig. 4-32,
using values given in the text.

Solution:
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Exercise 4-16 In open-loop mode, an op-amp circuit has a gain of 100 dB and half-power bandwidth of
32 Hz. What will the gain and bandwidth be in closed-loop mode with K = 0.01?

Solution: Converting units, 100 dB = 105 and 32 Hz corresponds to ω = 2π32 = 200 rad/s.
So the gain-bandwidth product of the amplifier is GBP = 2×107.
The closed-loop dc gain is 1

K = 100.
The closed-loop half-power bandwidth is

2×107

100
= 2×105 rad/s,

which is equivalent to 32 kHz. The closed-loop gain is 2× 107/2× 105 = 100, which is equivalent to

40 dB.
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Exercise 4-17 Compute the steady-state step response lim
t→∞

ystep(t) for the BIBO stable system with transfer
function

H(s) =
2s2 +3s+4

5s3 +6s2 +7s+8
.

Solution: We can avoid computing a partial fraction expansion by using the Final Value Theorem.
Since LLL [u(t)] = 1/s, we have

LLL [ystep(t)] = Ystep(s) = H(s)
1
s
.

The Final Value Theorem gives

lim
t→∞

ystep(t) = lim
s→0

s Ystep(s) = lim
s→0

s H(s)
1
s
= H(0) =

4
8
=

1
2

.
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Exercise 4-18 In Example 4-13, suppose a = 101, b = 100 and K1 = 1. Compute K2 so that the closed-loop
system is critically damped using PD feedback.

Solution: The closed-loop transfer function for the motor is given in Eq. (4.148) for proportional feedback,
G(s) = K. If PD feedback is used instead, Eq. (4.148) should be modified to

Q(s) =
b

s2 +as+b G(s)
,

with G(s) = K1 +K2s.
Inserting the given values,

Q(s) =
100

s2 +101s+100(1+K2s)
=

100
s2 +(101+100K2)s+100

.

The closed-loop system is critically damped if the denominator polynomial

[s2 +(101+100K2)s+100]

has a double root. This happens if

s2 +(101+100K2)s+100 = (s+10)2 =⇒ (101+100K2) = 20 =⇒ K2 =−0.81.

The impulse response is then h(t) =LLL −1[Q(s)] = 100te−10t u(t).
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Exercise 4-19 Using proportional feedback with K = L+0.2, compute the response to input x(t) = 0.01u(t).

Solution: From Eq. (4.170), the closed-loop transfer function is

Q(s) =
−s2

(L−K)s2−g
=

−s2

−0.2s2−9.8
=

5s2

s2 +49
.

Then

θ(s) = Q(s) X(s) =
5s2

s2 +49
0.01

s
=

0.05s
s2 +49

,

and

θ(t) =LLL −1[θ(s)] = 0.05cos(7t) u(t),

which is oscillatory.
Note the amplitude 0.05 is small enough for the linear model to be valid.
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Exercise 4-20 Using PI feedback, show that the closed-loop system is stable if K1 > L and K2 > 0.

Solution: PI feedback means that G(s) = K1+K2/s. The closed-loop transfer function is given by Eq. (4.177)
as

Q(s) =
−s2

(L−K1)s2−K2s−g
.

The closed-loop system is BIBO stable if all three coefficients of the denominator polynomial have the
same sign, so its roots are in the LHP. If K1 > L and K2 > 0, then all three coefficients are negative, and the

closed-loop system is BIBO stable.
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Exercise 4-21 Using PI feedback with K1 = L+0.2, select the value of K2 so that the closed-loop system is
critically damped.

Solution: PI feedback means that G(s) = K1 +K2/s. From Eq. (4.177), the closed-loop transfer function is

Q(s) =
−s2

(L−K1)s2−K2s−g
.

Inserting K1 = L+0.2 gives

Q(s) =
−s2

−0.2s2−K2s−9.8
−5
−5

=
5s2

s2 +5K2s+49
.

The closed-loop system is critically damped if it has a double pole.

This happens if s2 +5K2s+49 = (s+7)2 =⇒ 5K2 = 14 =⇒ K2 = 2.8.
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Exercise 4-22 Use LabVIEW Module 4.2 to compute the inverted pendulum responses shown in Fig. 4-38.

Solution:
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Exercise 5-1 Obtain the Fourier-series representation for the waveform shown in Fig. E5-1.

Solution: For the cycle from t =−2 s to t = 2 s, the waveform is given by

x(t) =

{
5t for −2≤ t ≤ 0,
10−5t for 0≤ t ≤ 2.

With T0 = 4 s and ω0 = 2π/T0 = π/2 rad/s,

a0 =
1
T0

∫ 2

−2
x(t) dt

=
1
4

[∫ 0

−2
5t dt +

∫ 2

0
(10−5t) dt

]
= 0,

an =
2
T0

∫ T0/2

−T0/2
x(t)cosnω0t dt

=
1
2

[∫ 0

−2
5t cos

nπt
2

dt +
∫ 2

0
(10−5t)cos

nπt
2

dt
]
.

Using the integral relationship given in Appendix C-2 as∫
xcosax dx =

1
a2 cosax+

x
a

sinax,

we have
an =

20
n2π2 (1− cosnπ).

Similarly, using the relation ∫
xsinax dx =

1
a2 sinax =

x
a

cosax,

we have

bn =
2
T0

∫ T0/2

−T0/2
x(t) sinnω0t dt

=
1
2

[∫ 0

−2
5t sin

nπt
2

dt +
∫ 2

0
(10−5t)sin

nπt
2

dt
]

=
10
nπ

(1− cosnπ).

Hence,

x(t) =
∞

∑
n=1

[
20

n2π2 (1− cosnπ)cos
nπt
2

+
10
nπ

(1− cosnπ)sin
nπt
2

]
.
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Exercise 5-2 Obtain the line spectra associated with the periodic function of Exercise 5-1.

Solution:

cn =
√

a2
n +b2

n

=

{[
20

n2π2 (1− cosnπ)

]2

+

[
10
nπ

(1− cosnπ)

]2
}1/2

= (1− cosnπ)
20

n2π2

√
1+

n2π2

4
,

φn =− tan−1
(

bn

an

)
=− tan−1

(nπ

2

)
.

We note that cn = 0 when n = even.
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Exercise 5-3 A periodic signal x(t) has the complex exponential Fourier series

x(t) = (−2+ j0)+(3+ j4)e j2t +(1+ j)e j4t

+(3− j4)e− j2t +(1− j)e− j4t .

Compute its cosine/sine and amplitude/phase Fourier series representations.

Solution: Using the relations in Table 5-3, we can assemble the following table:

n nω0 xn xn cn = 2|xn| φn = ∠xn an = cn cosφn bn =−cn sinφn

0 0 −2 2e j180◦ 2 180◦ −2 0
1 2 3+ j4 5e j53◦ 10 53◦ 6 −8
2 4 1+ j

√
2e j45◦ 2

√
2 45◦ 2 −2

Amplitude/phase representation:

x(t) =−2+10cos(2t +53◦)+2
√

2cos(4t +45◦).

Cosine/sine representation:

x(t) =−2+6cos(2t)−8sin(2t)+2cos(4t)−2sin(4t).

Note that xn =
1
2(an− jbn) for n = 1 and 2 but |x0|= c0, not c0/2.
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Exercise 5-4 (a) Does the waveform x(t) shown in Fig. E5-4 exhibit either even or odd symmetry? (b) What
is the value of a0? (c) Does the function y(t) = x(t)−a0 exhibit either even or odd symmetry?

Solution:
(a)

x(t) 6= x(−t) no even symmetry

x(t) 6=−x(−t) no odd symmetry

(b)

a0 =
2×1+3×1+(−1)×1

4
= 1.

(c) y(t) = [x(t)−a0] has odd symmetry.
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Exercise 5-5 The RL circuit shown in Fig. E5-5(a) is excited by the square-wave voltage waveform of
Fig. E5-5(b). Determine υout(t).

Solution: From the waveform, we deduce that

T0 = 2 s, ω0 =
2π

T0
= π rad/s, A = 1 V.

Step 1:

From entry #2 in Table 5-4,

υs(t) =
∞

∑
n=1

n=odd

4A
nπ

sin
(

2πnt
T0

)

=
∞

∑
n=1

n=odd

4
nπ

sinnπt

=
∞

∑
n=1

n=odd

4
nπ

cos(nπt−90◦) V.

Thus,

c0 = 0, cn =
4

nπ
, φn =−90◦.

Step 2:

Ĥ(ω) =
V̂out(ω)

V̂s(ω)
=

jωL
R+ jωL

.
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Step 3:

With ω0 = π rad/s and φn =−90◦,

υout(t) = c0 Ĥ(ω = 0)+
∞

∑
n=1

cn Re{H(ω = nω0) e j(nω0t+φn)}

=
∞

∑
n=1

n=odd

4
nπ

Re

{
jnω0L

R+ jnω0L
e j(nω0t+φn)

}

=
∞

∑
n=1

n=odd

4L√
R2 +n2π2L2

cos(nπt +θn) V,

with

θn =− tan−1
(

nπL
R

)
.
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Exercise 5-6 For a single rectangular pulse of width τ , what is the spacing ∆ω between first nulls? If τ is
very wide, will its frequency spectrum be narrow and peaked or wide and gentle?

Solution: From Fig. 5-13(b), first nulls occur at ±2π

τ
. Hence, ∆ω = 4π/τ . Wide τ leads to narrow

spectrum.
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Exercise 5-7 Use the entries in Table 5-6 to determine the Fourier transform of u(−t).

Solution: From Table 5-6,

sgn(t)
2
jω

,

u(t) π δ (ω)+
1
jω

.

Also,
sgn(t) = u(t)−u(−t).

Hence,
u(−t) = u(t)− sgn(t),

and the corresponding Fourier transform is

u(−t) π δ (ω)+
1
jω
− 2

jω
= π δ (ω)− 1

jω
.
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Exercise 5-8 Verify the Fourier transform expression for entry #10 in Table 5-7.

Solution:

x(t)cos(ω0t) =
(

e jω0t + e− jω0t

2

)
x(t).

Applying Property 5 in Table 5-7,

1
2

e jω0t x(t)
1
2

X(ω−ω0),

1
2

e− jω0t x(t)
1
2

X(ω +ω0).

Hence,

x(t)cos(ω0t)
1
2
[X(ω−ω0)+X(ω +ω0)].
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Exercise 5-9 Determine the voltage across the capacitor, υC(t), in Fig. 5-20(a) of Example 5-15, for each of
the three voltage waveforms given in the example statement.

From Eq. (5.120),
ÎC(ω)

V̂s(ω)
=

j0.5ω×10−3

3+ jω
.

Hence, with C = 0.25 mF,

V̂C(ω) =
ÎC(ω)

jωC
=

2
3+ jω

V̂s(ω).

(a) υs(t) = 10u(t)

V̂s(ω) = 10π δ (ω)+
10
jω

.

Hence,

V̂C(ω) =
20π δ (ω)

3+ jω
+

20
jω(3+ jω)

,

υC(t) =FFF−1[V̂C(ω)] =
1

2π

∫
∞

−∞

20π δ (ω)

3+ jω
e jωt dω +FFF−1

[
20

jω(3+ jω)

]
=

10
3

u(t)+FFF−1
[

20
jω(3+ jω)

]
.

From entry #7 in Table 5-6,

e−at u(t)
1

a+ jω
.

Let us define
20

jω(3+ jω)
=

F̂1

jω
.

with
F̂1 =

20
3+ jω

.

Hence,
f1(t) = 20e−3t u(t).
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According to property #8 in Table 5-7, ∫ t

−∞

f1(t) dt
F̂1(ω)

jω
.

Hence,

FFF−1
[

20
jω(3+ jω)

]
=
∫ t

−∞

20e−3t u(t) dt

=
−20

3
e−3t

∣∣∣∣t
0
=

20
3

(1− e)−3t) u(t).

Thus,

υC(t) =
[

10
3
+

20
3

(1− e−3t)

]
u(t) V.

(b) υs(t) = 10e−2t u(t) V.

V̂s(ω) =
10

2+ jω
V,

and
V̂C(ω) =

2
3+ jω

· 10
2+ jω

=
20

(3+ jω)(2+ jω)
.

By partial fraction expansion,

V̂C(ω) =
A1

3+ jω
+

A2

2+ jω
,

with

A1 = (3+ jω) V̂C(ω)
∣∣

jω=−3 =
20

2+ jω

∣∣∣∣
jω=−3

=−20,

A2 = (2+ jω) V̂C(ω)
∣∣

jω=−2 =
20

3+ jω

∣∣∣∣
jω=−2

= 20.

Hence,

V̂C(ω) =
−20

3+ jω
+

20
2+ jω

,

and

υC(t) = 20(e−2t − e−3t) u(t) V.

(c) υs(t) = 10+5cos4t V.

V̂s(ω) = 20π δ (ω)+5π[δ (ω−4)+δ (ω +4)].

Hence,

V̂C(ω) =
2

3+ jω
V̂s(ω)

=
40π δ (ω)

3+ jω
+

10π δ (ω−4)
3+ jω

+
10π δ (ω +4)

3+ jω
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and

υC(t) =FFF−1[V̂C] =
1

2π

∫
∞

−∞

V̂C(ω) e jωt dω

= 20
∫

∞

−∞

δ (ω) e jωt

3+ jω
dω +5

∫
∞

−∞

δ (ω−4) e jωt

3+ jω
dω

+5
∫

∞

−∞

δ (ω +4) e jωt

3+ jω
dω

=
20
3
+

(
5e j4t

3+ j4
+

5e− j4t

3− j4

)

=
20
3
+2cos(4t−36.9◦) V.
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Exercise 6-1 Convert the following magnitude ratios to dB: (a) 20, (b) 0.03, (c) 6×106.

Solution:

(a) 20log(20) = 20×1.301 = 26.02 dB.

(b) 20log(0.03) = 20× (−1.523) = −30.46 dB.

(c) 20log(6×106) = 20log6+20log106 = 15.56+120 = 135.56 dB.
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Exercise 6-2 Convert the following dB values to magnitude ratios: (a) 36 dB, (b) −24 dB, (c) −0.5 dB.

Solution:

(a) (10)36/20 = 63.1.

(b) (10)−24/20 = 0.063.

(c) (10)−0.5/20 = 0.94.
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Exercise 6-3 Determine the order of Ĥ(ω) = V̂out/V̂s for the circuit in Fig. E6-3.

Solution: Circuit analysis leads to

Ĥ(ω) =
jω3RLC2

ω2LC− (1−ω2LC)(1+ jωRC)
.

For ω very large, such that ω2LC� 1 and ωRC� 1,

Ĥ(ω)' 1, ω very large.

For ω very small, such that ω2LC� 1 and ωRC� 1,

Ĥ(ω)' jω3RLC2.

Hence, filter is third order.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 6-4 Choose values for Rs and Rf in the circuit of Fig. 6-16(b) so that the gain magnitude is 10 and
the corner frequency is 103 rad/s, given that Cf = 1 µF.

Solution: According to Eq. (6.51),

GLP =−Rf

Rs
=−10,

ωLP =
1

RfCf
= 103 rad/s.

With Cf = 1 µF,

Rf = 1 kΩ, and Rs = 100 Ω.
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Exercise 6-5 What are the values of the corner frequencies associated with M1, M2, and M3 of Example 6-4?

Solution: By plotting the expressions for M1, M2, and M3 and determining the angular frequencies at which
each is 1/

√
2 of its peak value, we can show that

ωc1 = 105 rad/s, ωc2 = 0.64ωc1 , and ωc3 = 0.51ωc1 .

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 6-6 Determine the output from a brick-wall lowpass filter with a cutoff frequency of 0.2 Hz, given
that the input is the square wave given by Eq. (6.57).

Solution: This exercise is similar to Example 6-5.
The square wave given by Eq. (6.57) has the Fourier series given by Eq. (6.58):

x(t) = sin(t)+
1
3

sin(3t)+
1
5

sin(5t)+
1
7

sin(7t)+ · · · ,

which has components at frequencies 1
2π

= 0.16 Hz, 3
2π

= 0.48 Hz, 5
2π

= 0.80 Hz, etc.
The brick-wall lowpass filter with a cutoff frequency of 0.2 Hz will allow only the first component to pass

through. Hence the output is simply

y(t) = sin(t).
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Exercise 6-7 Determine the output from a brick-wall bandpass filter with fc1 = 0.2 Hz and fc2 = 1 Hz, given
that the input is the square wave given by Eq. (6.57).

Solution: This exercise is similar to Example 6-5.
The square wave given by Eq. (6.57) has the Fourier series given by Eq. (6.58):

x(t) = sin(t)+
1
3

sin(3t)+
1
5

sin(5t)+
1
7

sin(7t)+ · · · ,

which has components at 1
2π

= 0.16 Hz, 3
2π

= 0.48 Hz, 5
2π

= 0.80 Hz, 7
2π

= 1.12 Hz, etc.
The brick-wall bandpass filter with cutoff frequencies 0.2 Hz and 1 Hz will allow only the second and third

components to pass through, since 0.16 < 0.2 Hz, 0.2 < 0.48, 0.80 < 1 Hz, and 1.12 > 1 Hz. Hence the output
is simply

y(t) =
1
3

sin(3t)+
1
5

sin(5t).
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Exercise 6-8 An LTI system has zeros at ± j3. What sinusoidal signals will it eliminate?

Solution: An LTI system with zeros at ± j3 has a transfer function of the form

H(s) = (s− j3)(s+ j3) H0(s)

for some rational function H0(s).
The frequency response of the system has the form

Ĥ(ω) = ( jω− j3)( jω + j3) Ĥ0(ω)

for some rational function Ĥ0(ω).
The response to a general sinusoid of the form x(t) = Acos(3t +θ) is then

y(t) = A|Ĥ(3)|cos(3t +θ +∠[Ĥ(3)]) = 0

because Ĥ(3) = 0. Hence, the system will eliminate x(t) = Acos(3t +θ) for any values of A or θ .
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Exercise 6-9 An LTI system has poles at −0.1± j4. What sinusoidal signals will it emphasize?

Solution: An LTI system with poles at (−0.1± j4) has a transfer function of the form

H(s) =
H0(s)

(s+0.1+ j4)(s+0.1− j4)
,

where H0(s) is some rational function. The frequency response of the system is

Ĥ(ω) = H(s)|s= jω =
Ĥ0(ω)

[0.1+ j(ω +4)][0.1+ j(ω−4)]
.

Hence, Ĥ(ω) wil emphasize any sinusoid x(t) = Acos(ωt +θ) at ω = 4 rad/s.
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Exercise 6-10 Design (specify the transfer function of) a notch filter to reject a 50-Hz sinusoid. The filter’s
impulse response must decay to 0.005 within 6 seconds.

Solution: This exercise is similar to Example 6-7. We have ω0 = 2π×50 = 100π rad/s, but we need to find
α .

The amplitude of the cosine term in hnotch(t) is Ae−αt . At t = 6 s, we require

Ae−6α =

[
4α

2 +
α4

ω2
0

]1/2

e−6α < 0.005.

Trial and error leads to α = 1 s−1 as the solution. Inserting α = 1 s−1 and ω0 = 100π rad/s gives

H(s) = 1− 2αs
(s+α)2 +ω2

0
= 1− 2s+1

s2 +2s+98697
.
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Exercise 6-11 Design a comb filter to eliminate periodic interference with period = 1 ms. Assume that
harmonics above 2 kHz are negligible. Use α = 100 s−1.

Solution: We need a comb filter that can eliminate 1-kHz and 2-kHz sinusoids. Hence, n = 2, which matches
Eq. (6.80). Upon setting ω0 = 2000π rad/s and α = 100 s−1, and replacing jω with s, Eq. (6.80) becomes

H(s) =
s2 +(2000π)2

s2 +200s+104 +(2000π)2 ×
s2 +(4000π)2

s2 +200s+104 +(4000π)2 .
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Exercise 6-12 Where should the poles of a second-order Butterworth lowpass filter be located, if its cutoff
frequency is 3 rad/s?

Solution: Since the order 2 is even, distribute 2(2) = 4 equally spaced poles around the circle of radius 3 rad/s,
symmetrically arranged with respect to both axes. These poles are at {3e± j45◦ ,3e± j135◦}. Discarding the poles
in the right half-plane leaves

poles at {3e± j135◦}.
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Exercise 6-13 Where should the poles of a third-order Butterworth lowpass filter be located, if its cutoff
frequency is 5 rad/s?

Solution: Since the order 3 is odd, distribute 2(3) = 6 equally spaced pole around the circle of radius 5 rad/s,
starting with 5e j0. These poles are at

{5e j0,5e± j60◦ ,5e± j120◦ ,5e j180◦}.

Discarding the poles in the right half-plane leaves

poles at {−5,5e± j120◦}.
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Exercise 6-14 Obtain the transfer function of a resonator filter designed to enhance 5-Hz sinusoids. Use
α = 2.

Solution: The transfer function of a resonator filter is

Hresonator(s) = 1−Hnotch(s) =
2αs+α2

(s+α)2 +ω2
0
.

Inserting ω0 = 10π rad/s and α = 2 s−1 gives

Hresonator(s) =
4s+4

s2 +4s+991
.
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Exercise 6-15 Use LabVIEW Module 6.3 to denoise the noisy trumpet signal using a resonator filter,
following Example 6-13. Use a noise level of 0.2.

Solution:
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Exercise 6-16 Given 20 signals, each of (two-sided) bandwidth Bb = 10 kHz, how much total bandwidth
would be needed to combine them using FDM with SSB modulation and no guard bands between adjacent
signals?

Solution: With SSB modulation, only half of the two-sided bandwidth is used, which in the present case
translates into 5 kHz per signal. For 20 FDM-combined signals with no guard bands between them, the total
bandwidth is

20×5 kHz = 100 kHz.
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Exercise 6-17 Figure E6-17 depicts the frequency bands allocated by the U.S. Federal Communications
Commission (FCC) to four AM radio stations. Each band is 8 kHz in extent. Suppose radio station WJR (with
carrier frequency of 760 kHz) were to accidentally transmit a 7-kHz tone, what impact might that have on other
stations? [Even though the four stations are separated by long distances, let us assume they are close to one
another.]

Solution: After modulation by 760 kHz, the tone has frequencies at:

760−7 = 753 kHz, and 760+7 = 767 kHz.

Listeners tuning in to stations at 750 kHz and 770 kHz will hear a tone at 3 kHz, because

753−750 = 3 kHz, and 767−770 =−3 kHz.

Remember that frequency bands centered at −750 and −770 kHz are also modulated to baseband, and
−767− (−770) = 3 kHz.
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Exercise 6-18 What is the Nyquist sampling rate for a signal bandlimited to 5 kHz?

Solution: The Nyquist rate is double the maximum frequency.

2(5 kHz) = 10000 samples/s.
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Exercise 6-19 A 500 Hz sinusoid is sampled at 900 Hz. No anti-alias filter is used. What is the frequency of
the reconstructed sinusoid?

Solution:
The spectrum of the sampled signal has components at frequencies

{±500,±900±500,±1800±500, . . .}= {±400,±500,±1300,±1400, . . .} Hz.

The reconstruction filter is a lowpass filter with cutoff at 1
2(900) = 450 Hz.

This leaves components at ±400 Hz. The frequency of the reconstructed sinusoid is

400 Hz.
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Exercise 7-1 Determine the duration of {3,1,4,6}.

Solution: In discrete time, the duration of a signal that is zero outside the interval a≤ n≤ b is b−a+1.

Here, a =−1, b = 2, so the duration is b−a+1 = 4.
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Exercise 7-2 If the mean value of x[n] is 3, what transformation results in a zero-mean signal?

Solution: The mean of the sum of two signals is the sum of the means.

y[n] = x[n]−3.
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Exercise 7-3 Determine the fundamental period and fundamental angular frequency of

3cos(0.56πn+1).

Solution: According to Eq. (7.21),

N0 =
2πk
Ω

=
2πk

0.56π
=

25k
7

.

Hence, select k = 7 and N0 = 25 samples.

Also,

Ω0 =
2π

N0
=

2π

25
rad/sample.
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Exercise 7-4 Compute the fundamental angular frequency of 2cos(5.1πn+1).

Solution: According to Eq. (7.21),

N0 =
2πk
Ω

=
2πk
5.1π

=
20k
51

.

Hence, select k = 51 and N0 = 20 samples.

Ω0 =
2π

N0
=

2π

20
= 0.1π rad/sample.
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Exercise 7-5 Transform the following equation into the form of an ARMA difference equation:

y[n+2]+2y[n] = 3x[n+1]+4x[n−1].

Solution: The output y[n] must be a linear combination of y[n− i], x[n] and x[n− i] for i > 0.

Replacing n with n−2 gives y[n]+2y[n−2] = 3x[n−1]+4x[n−3].
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Exercise 7-6 Is the system with impulse response

h[n] =
1

(n+1)2 u[n]

BIBO stable?

Solution: An LTI system is BIBO stable if and only if ∑
∞
n=−∞ |h[n]| is finite.

Here,
∞

∑
n=−∞

|h[n]|=
∞

∑
n=0

1
(n+1)2 =

π2

6
.

This is finite, so the system is BIBO stable.
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Exercise 7-7 Is the system with h[n] =
(1

2

)n
u[n] BIBO stable?

Solution: An LTI system with impulse response h[n] = Cpn u[n] is BIBO stable if and only if |p|< 1, since

∞

∑
n=−∞

|h[n]|= |C|
∞

∑
n=0
|p|n = |C|

1−|p|

if and only if |p|< 1.

Here, p = 0.5 and |p|= |0.5|< 1, so the system is BIBO stable.
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Exercise 7-8 A system has an impulse response h[n] = 0 for n < 0 but h[0] 6= 0. Is the system causal?

Solution:

y[n] =
∞

∑
i=0

h[i] x[n− i] = h[0] x[n]+h[1] x[n−1]+ · · · .

h[0] 6= 0 means that y[n] depends on x[n] as well as on past values of x[n].
The output of a causal system at time n can depend on the input at the same time n and at previous times.

Hence, the system is causal.
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Exercise 7-9 Compute y[n] = {1,2}∗{0,0,3,4}.

Solution: First, note that {1,2}∗{3,4}= {(1)(3),(1)(4)+(2)(3),(2)(4)}= {3,10,8}.

Using property #5 with a =−1 and b = 2 gives y[n] = {0,3,10,8}.
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Exercise 7-10 Compute the z-transform of {1,2}. Put the answer in the form of a rational function.

Solution:

ZZZ[{1,2}] = 1z−0 +2z−1 =
z+2

z
.
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Exercise 7-11 Compute the z-transform of {1,1}+ (−1)n u[n]. Put the answer in the form of a rational
function.

Solution:

ZZZ[{1,1}] = 1z−0 +1z−1,

ZZZ[(−1)n u[n]] =
z

z− (−1)
=

z
z+1

,

ZZZ[{1,1}+(−1)n u[n]] = 1+ z−1 +
z

z+1
=

z+1
z

+
z

z+1
=

2z2 +2z+1
z2 + z

.
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Exercise 7-12 Compute ZZZ[n u[n]], given that ZZZ[u[n]] = z
z−1 .

Solution: Using the z-derivative property,

ZZZ[n u[n]] =−z
d
dz

[
z

z−1

]
=

z
(z−1)2 .
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Exercise 7-13 Compute ZZZ[nan u[n]], given that

ZZZ[n u[n]] =
z

(z−1)2 .

Solution: Using the z-scaling property,

ZZZ[nan u[n]] =
z/a

((z/a)−1)2
a2

a2 =
az

(z−a)2 .
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Exercise 7-14 Compute the inverse z-transform of (z+3)/(z+1).

Solution:

z+3
z+1

= 1+
2

z+1
,

ZZZ−1
[

z+3
z+1

]
=ZZZ−1[1]+ZZZ−1

[
2

z+1

]
= δ [n]+2(−1)n−1 u[n−1].
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Exercise 7-15 Compute the inverse z-transform of 1/[(z+1)(z+2)].

Solution: The partial fraction expansion is

1
(z+1)(z+2)

=
1

z+1
− 1

z+2
.

The inverse z-transform is then (−1)n−1 u[n−1]− (−2)n−1 u[n−1].
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Exercise 7-16 Use z-transforms to compute the zero-input response of the system

y[n]−2y[n−1] = 3x[n]+4x[n−1]

with initial condition y[−1] = 1
2 .

Solution: Zero-input response means x[n] = x[n−1] = 0. Hence, the system equation reduces to

y[n]−2y[n−1] = 0.

Transferring to the z-domain:

y[n] Y(z)

y[n−1]
1
z

Y(z)+ y[−1] =
1
z

Y(z)+
1
2
.

Hence,

Y(z)−2
[

1
z

Y(z)+
1
2

]
= 0,

Y(z)
[

1− 2
z

]
= 1,

Y(z) =
1

1− 2
z

=
z

z−2
.

From Table 7-5,

y[n] = 2n u[n].
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Exercise 7-17 A system is described by

y[n]− 3
4

y[n−1]+
1
8

y[n−2] = x[n]+2x[n−1].

Compute its transfer function.

Solution: Taking the z-transform gives

Y(z)
[

1− 3
4

z−1 +
1
8

z−2
]
= X(z) [1+2z−1].

Hence,

H(z) =
Y(z)
X(z)

=
1+2z−1

1− 3
4 z−1 + 1

8 z−2

z2

z2 =
z2 +2z

z2− 3
4 z+ 1

8

.
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Exercise 7-18 A system is described by

y[n]− 3
4

y[n−1]+
1
8

y[n−2] = x[n]+2x[n−1].

Determine its poles and zeroz and whether or not it is BIBO stable.

Solution: Taking the z-transform gives

Y(z)
[

1− 3
4

z−1 +
1
8

z−2
]
= X(z)[1+2z−1].

Hence,

H(z) =
Y(z)
X(z)

=
1+2z−1

1− 3
4 z−1 + 1

8 z−2

z2

z2 =
z2 +2z

z2− 3
4 z+ 1

8

=
(z−0)(z+2)
(z− 1

2)(z−
1
4)

.

The system has zeros {0,−2} and poles {1
2 ,

1
4}. Note that |12 |< 1 and |14 |< 1.

Since both poles are inside the unit circle, the system is BIBO stable.
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Exercise 7-19 Compute the response of the system y[n] = x[n]− x[n−2] to input x[n] = cos(πn/4).

Solution: Take the z-transform:

Y(z) = X(z)− z−2 X(z) = [1− z−2] X(z).

The transfer function is

H(z) =
Y(z)
X(z)

= 1− z−2 .

Substituting z = e jΩ gives the frequency response function

H(e jΩ) = 1− e− j2Ω .

Substituting Ω = π

4 gives

H(e jπ/4) = 1− e− jπ/2 = 1− (− j) = 1+ j =
√

2 e jπ/4 .

The response of the system to x[n] is 1.414cos
(

π

4
n+

π

4

)
.
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Exercise 7-20 An LTI system has H(e jΩ) = j tan(Ω). Compute the difference equation.

Solution: We need to write H(e jΩ) as a function of e jΩ, not just of Ω.
Using the definitions

2cos(Ω) = e jΩ + e− jΩ

and
2 j sin(Ω) = e jΩ− e− jΩ,

gives

H(e jΩ) = j tan(Ω) =
2 j sin(Ω)

2cos(Ω)
=

e jΩ− e− jΩ

e jΩ + e− jΩ .

Substituting e jΩ = z gives the transfer function

H(z) =
z− z−1

z+ z−1
z−1

z−1 =
1− z−2

1+ z−2 =
Y(z)
X(z)

.

Cross-multiplying gives
Y(z) [1+ z−2] = X(z) [1− z−2].

An inverse z-transform gives y[n]+ y[n−2] = x[n]− x[n−2].
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Exercise 7-21 Compute the DTFS of 4cos(0.15πn+1).

Solution: According to Eq. (7.136a), the DTFS representation is given by

x[n] =
N0−1

∑
k=0

xke jkΩ0n

=
N0−1

∑
k=0

xke j2πnk/N0 , (0.1)

where we used the relationship Ω0 = 2π/N0. Our goal is to find the values of xk, which we can we do by
applying Eq. (7.136b) or by comparing Eq. (1) with the given sinusoid after expressing the latter in terms of
complex exponentials. The second approach entails writing x[n] as

x[n] = 4cos(0.15πn+1)

= 4cos
(

2π

(
3
40

)
n+1

)
= 2cos

[
e j(2π( 3

40)n+1) + e− j(2π( 3
40)n+1)

]
= 2e j1e j2π( 3

40)n +2e− j1e− j2π( 3
40)ne j2π

= 2e j1e j2π( 3
40)n +2e− j1e j2π(1− 3

40)n

= 2e j1e j2π( 3
40)n +2e− j1e j2π( 37

40)n. (0.2)

We surmise from the expression for x[n] that N0 = 40 samples. Comparison of the two terms in Eq. (2) with
the summation in Eq. (1) leads to the conclusion that the first term corresponds to k = 3 and the second term
corresponds to k = 37. Hence,

x3 = 2e j1, x37 = 2e− j1,

and all other terms for k = 0 to 39 are zero.
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Exercise 7-22 Confirm Parseval’s rule for the above exercise.

Solution: Parseval’s theorem states that the average power of a periodic signal is the same whether it is
computed in the time domain or in the frequency (DTFS) domain.

Time domain: The average power of the periodic sinusoid is
42

2
= 8.

Frequency domain: The average powers of the two periodic complex exponentials are |2e j1|2 + |2e− j1|2 = 8.

Hence, the average powers are identical.
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Exercise 7-23 Compute the DTFT of 4cos(0.15πn+1).

Solution: According to entry #6 in Table 7-8, the DTFT of Acos(Ω0n+θ) is

Aπe jθ
δ ((Ω−Ω0))+Aπe− jθ

δ ((Ω+Ω0)),

where

δ ((Ω−Ω0)) =
∞

∑
k=−∞

δ (Ω+2πk−Ω0)

is a chain of impulses in Ω.
Note that the DTFT of any signal is always periodic in Ω with period 2π .
Here, A = 4, Ω0 = 0.15π , θ = 1, so the DTFT is

4πe j1
δ ((ω−0.15))+4πe− j1

δ ((ω +0.15)).
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Exercise 7-24 Compute the inverse DTFT of

4cos(2Ω)+6cos(Ω)+ j8sin(2Ω)+ j2sin(Ω).

Solution: We need to write this function X(e jΩ) in terms of e jΩ, not just of Ω.
Using the definitions

2cos(Ω) = e jΩ + e− jΩ

and
2 j sin(Ω) = e jΩ− e− jΩ

gives
X(e jΩ) = [2e j2Ω +2e− j2Ω]+ [3e jΩ +3e− jΩ]+ [4e j2Ω−4e− j2Ω]+ [e jΩ− e− jΩ].

Summing terms,
X(e jΩ) = 6e j2Ω +4e jΩ +2e− jΩ−2e− j2Ω.

The DTFT is

X(e jΩ) =
∞

∑
n=−∞

x[n] e− jΩn,

so we can read off {6,4,0,2,−2}.
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Exercise 7-25 Compute the 4-point DFT of {4,3,2,1}.

Solution: The N0-point DFT is

Xk =
N0−1

∑
n=0

x[n] e− j2πnk/N0 for k = 0,1, . . . ,N0−1.

Here, N0 = 4, and e− j2πnk/4 = (− j)nk for k = 0,1,2,3.
Hence,

X0 = x[0](1)+ x[1](1)+ x[2](1)+ x[3](1) = 4+3+2+1 = 10,

X1 = x[0](1)+ x[1](− j)+ x[2](−1)+ x[3]( j) = 4− j3−2+ j1 = 2− j2,

X2 = x[0](1)+ x[1](−1)+ x[2](1)+ x[3](−1) = 4−3+2−1 = 2,

X3 = x[0](1)+ x[1]( j)+ x[2](−1)+ x[3](− j) = 4+ j3−2− j1 = 2+ j2.

Since x[n] is real-valued, we could also have used X3 = X∗1.

The DFT is {10,(2− j2),2,(2+ j2)}. Check: fft([4 3 2 1]) gives the same answer.
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Exercise 7-26 How many MADs are needed to compute a 4096-point DFT using the FFT?

Solution: 4096
2 log2(4096) = 24576.
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Exercise 7-27 Using the decimation-in-frequency FFT, which values of the 8-point DFT of a signal of the
form {a,b,c,d,e, f ,g,h} do not have a factor of

√
2 in them?

Solution: In the decimation-in-frequency FFT, the twiddle multiplications only affect the odd-valued indices.
So {X0,X2,X4,X6} do not have a factor of

√
2 in them.
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Exercise 7-28 Using the decimation-in-time FFT, show that only two values of the 8-point DFT of a signal
of the form {a,b,a,b,a,b,a,b} are nonzero.

Solution: In the decimation-in-time FFT, 4-point DFTs of {a,a,a,a} and {b,b,b,b} are computed. These are
both zero except for the dc (k = 0) values. So the 8-point DFT has only two nonzero values X0 = 4a+4b and
X4 = 4a−4b.
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Exercise 8-1 Obtain the transfer function of a BIBO-stable, discrete-time lowpass filter consisting of a single
pole and a single zero, given that the zero is on the unit circle, the pole is at a location within 0.001 from the
unit circle, and the dc gain at Ω = 0 is 1.

Solution: A zero at e jΩ0 produces a dip in the magnitude |H(e jΩ)| at Ω = Ω0. A pole at ae jΩ0 produces a peak
in the magnitude |H(e jΩ)| at Ω = Ω0, where a≈ 1, but a < 1 is needed to make the system BIBO stable.

The lowpass filter should reject the highest discrete-time fundamental frequency Ω = π , and pass the lowest
discrete-time fundamental frequency Ω = 0 (dc) with H(e j0) = 1. So it should have a zero at e jπ = −1 and a
pole at ae j0 = a, for a≈ 1 and a < 1.

Using a = 0.999 gives

H(z) = C
z+1

z−0.999
.

Also,

1 = H(e j0) = H(1) = C
1+1

1−0.999
.

Solving for C gives C = 0.0005. Hence,

H(z) = 0.0005
z+1

z−0.999
.
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Exercise 8-2 Use LabVIEW Module 8.1 to replicate the result of Section 8-1.2 and produce Fig. 8-3.

Solution:
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Exercise 8-3 Use LabVIEW Module 8.1 to replicate Example 8-1 and produce Fig. 8-4.

Solution:
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Exercise 8-4 Determine the ARMA difference equation for the notch filter that rejects a 250 Hz sinusoid.
The sampling rate is 1000 samples per second. Use a = 0.99.

Solution: The discrete-time frequency to be rejected is

Ω0 = 2π
250

1000
=

π

2
.

The notch filter should have zeros at e± jπ/2 and poles at ae± jπ/2 = 0.99e± jπ/2.
The transfer function:

H(z) =
(z− e jπ/2)(z− e− jπ/2)

(z−0.99e jπ/2)(z−0.99e− jπ/2)
=

z2 +1
z2 +0.98

z−2

z−2 =
1+ z−2

1+0.98z−2 =
Y(z)
X(z)

.

Cross-multiplying gives
Y(z)(1+0.98z−2) = X(z)(1+ z−2).

The inverse z-transform is

y[n]+0.98y[n−2] = x[n]+ x[n−2] .

Note that −2cos
(
2π

250
1000

)
= 0.
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Exercise 8-5 Use LabVIEW Module 8.1 to replicate Example 8-2 and produce the pole-zero and gain plots
of Fig. 8-9(a).

Solution:
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Exercise 8-6 Use LabVIEW Module 8.2 to replicate Example 8-2 and produce the time waveforms of
Fig. 8-8.

Solution:
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Exercise 8-7 Use LabVIEW Module 8.3 to replicate Example 8-4 and produce the time waveforms of
Fig. 8-12 (as stem plots).

Solution:
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Exercise 8-8 Determine the ARMA difference equation for a comb filter that rejects periodic interference
that has period = 0.01 s and is bandlimited to 200 Hz. The sampling rate is 600 samples per second. Use
a = 0.99.

Solution: Periodic interference with period = 0.01 s has a continuous-time Fourier series expansion with
harmonics at multiples of 100 Hz. Since the interference is bandlimited to 200 Hz, the interference has
harmonics at 100 Hz and 200 Hz. Discrete-time frequencies to be rejected: 2π

100
600 = π

3 and 2π
200
600 = 2π

3 .
The comb filter should have zeros at e± jπ/3 and e± j2π/3, and poles at ae± jπ/3 = 0.99e± jπ/3 and
ae± j2π/3 = 0.99e± j2π/3.

The transfer function is

H(z) =
(z− e jπ/3)(z− e− jπ/3)(z− e j2π/3)(z− e− j2π/3)

(z−0.99e jπ/3)(z−0.99e− jπ/3)(z−0.99e j2π/3)(z−0.99e− j2π/3)
,

which simplifies to

H(z) =
z4 + z2 +1

z4 +0.98z2 +0.96
z−4

z−4 =
1+ z−2 + z−4

1+0.98z−2 +0.96z−4 =
Y(z)
X(z)

,

since
(z− e jπ/3)(z− e− jπ/3) = z2−2cos(π/3)z+1 = z2− z+1,

and
(z− e j2π/3)(z− e− j2π/3) = z2−2cos(2π/3)z+1 = z2 + z+1.

Cross-multiplying gives

Y(z) (1+0.98z−2 +0.96z−4) = X(z) (1+ z−2 + z−4).

The inverse z-transform is

y[n]+0.98y[n−2]+0.96y[n−4] = x[n]+ x[n−2]+ x[n−4] .
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Exercise 8-9 Use LabVIEW Module 8.4 to replicate Example 8-5 and produce the pole-zero and gain plots
of Fig. 8-13 and time waveforms of Fig. 8-14.

Solution:
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Exercise 8-10 Is deconvolution using real-time signal processing possible for the system: y[n] = x[n]−2x[n−1]?

Solution: Taking the z-transform gives

Y(z) = X(z)−2z−1 X(z) = (1−2z−1) X(z).

The transfer function is

H(z) =
Y(z)
X(z)

=
1

1−2z−1
z
z
=

z
z−2

.

The system has a zero at 2, and |2|> 1, so it is not minimum phase.

The inverse system is not BIBO stable, so real-time deconvolution is not possible.
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Exercise 8-11 A system is given by y[n] = x[n]−0.5x[n−1]+0.4x[n−2]. What is the difference equation
of its inverse system?

Solution: The z-transform is

Y(z) = X(z)−0.5z−1 X(z)+0.4z−2 X(z) = (1−0.5z−1 +0.4z−2) X(z).

The transfer function is

H(z) =
Y(z)
X(z)

=
1

1−0.5z−1 +0.4z−2
z2

z2 =
z2

z2−0.5z+0.4
.

The poles are the roots of denominator z2 − 0.5z + 0.4 = 0, which are {0.25 ± j0.581}. Since
|0.25± j0.581|= 0.6325 < 1, the system is minimum phase, and thus it is invertible.

The inverse system is the original system rearranged to

x[n] = y[n]+0.5x[n−1]−0.4x[n−2] .
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Exercise 8-12 Use LabVIEW Module 8.7 to replicate Example 8-18 and produce the time waveforms and
spectra of Fig. 8-18. Note that the dc component is larger.

Solution:
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Exercise 8-13 Use LabVIEW Module 8.8 to replicate Example 8-20 and produce the time waveforms and
spectra of Fig. 8-20. The time waveforms are different.

Solution:
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Exercise 8-14 The spectrum of {cos(0.3πn), n = 0, . . . ,N−1} is to be computed using the DFT. For what
values of N will there be no spectral leakage?

Solution: N must be an integer multiple of the period of cos(0.3πn), which is found from 2π

0.3π
= 20

3 ⇒ the

period is the numerator 20. N = integer multiple of 20 .
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Exercise 9-1 Compute the coefficients of a 5-point (a) Bartlett window and (b) Hamming window.

Solution: (a) {0, 1
2 ,1,

1
2 ,0},

(b) {0.08,0.54,1.00,0.54,0.08}.
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Exercise 9-2 What would the spectrogram of cos(t3) look like?

Solution: A parabola, since the instantaneous frequency is

f =
1

2π

dt3

dt
=

3
2π

t2.
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Exercise 9-3 Use LabVIEW Module 9.2 to display the spectrogram of “The Victors.” Choose the window
length so that the notes do not overlap in time.

Solution:

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 9-4 Use LabVIEW Module 9.3 to display the spectrogram of a chirp with slope 1.0 using window
length 32.

Solution:
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Exercise 9-5 Design a differentiator of length 3 using a rectangular data window. Interpret your answer.

Solution: h[n] = {1,0,−1} becomes

y[n] = x[n+1]− x[n−1],

which is a difference operator.
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Exercise 9-6 Using the continuous-time filter

ha(t) = δ (t)−3e−3t u(t)

and Ts = 2, design a discrete-time filter using impulse invariance.

Solution: The impulse is just feedthrough.

h[n] = δ [n]−Ts ha(nTs) = δ [n]−6e−6n u[n].
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Exercise 9-7 Using the continuous-time filter Ha(s) = s/(s+ 1) and T = 2, design a discrete-time filter
using bilinear transformation.

Solution: Setting s = 2
2

z−1
z+1 in Ha(s) gives

H(z) =
(z−1)/(z+1)

1+(z−1)/(z+1)

=
z−1

(z+1)+(z−1)
=

1
2
(1− z−1).

So h[n] = {1
2 ,−

1
2} is actually FIR here!
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Exercise 9-8 We wish to design an IIR discrete-time lowpass filter with cutoff frequency Ω0 = π

2 using
bilinear transformation with T = 0.001. Determine the continuous-time lowpass filter cutoff frequency ω .

Solution:

ω =
2
T

tan
(

Ω0

2

)
=

2
0.001

tan
(

π/2
2

)
= 2000tan

(
π

4

)
= 2000.
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Exercise 9-9 Using bilinear transformation with T = 0.1, the continuous-time frequency ω = 20 maps to
what discrete-time frequency?

Solution:

20 = ω =
2

0.1
tan
(

Ω

2

)
1 = tan

(
Ω

2

)
Ω =

π

2
.
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Exercise 9-10 Use bilinear transformation with T = 2 to design an IIR ideal differentiator.

Solution: From Chapter 3, Ha(s)=s, s = 2
2

z−1
z+1 . So

H(z) =
z−1
z+1

=
Y(z)
X(z)

y[n]+ y[n−1] = x[n]− x[n−1].
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Exercise 9-11 cos(0.6πn) ?

Solution: cos(0.6πn). ω = 0.6π becomes ω = 1.8π , which aliases to ω = 0.2π , since 1.8π ≡−0.2π ≡ 0.2π .
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Exercise 9-12 cos(0.8πn) ?

Solution: cos(0.8πn). ω = 0.8π becomes ω = 3.2π , which aliases to ω = 0.8π , since 3.2π ≡−0.8π ≡ 0.8π .
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Exercise 9-13 cos(0.4πn) ?

Solution: ω = {0.4π,(2−0.4)π,(2+0.4)π,(4−0.4)π} become

ω = {0.1π,0.4π,0.6π,0.9π}.

The input was a single sinusoid, but the output is four sinusoids.
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Exercise 9-14 cos(0.8πn) ?

Solution: ω = {0.8π,(2−0.8)π,(2+0.8)π,(4−0.8)π} become

ω = {0.2π,0.3π,0.7π,0.8π}.

The input was a single sinusoid, but the output is four sinusoids.
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Exercise 9-15 Use LabVIEW Module 9.4 to estimate the period of the waveform with period 0.005 and
noise level 1.

Solution:
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Exercise 9-16 Use LabVIEW Module 9.5 to estimate the time delay of the signal when its actual delay is
0.3 and the noise level is 1.

Solution:
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Exercise 10-1 Use LabVIEW Module 10.1 to show the effect of drastic lowpass filtering on the letters
image. Set both slides to their minimum values.

Solution:
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Exercise 10-2 Use LabVIEW Module 10.2 to denoise the letters image using a lowpass filter. Set “K” to
0.5, L to 5, and noise level to 100.

Solution:
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Exercise 10-3 Use LabVIEW Module 10.3 to deconvolve the letters image from a noisy blurred version of
it. Set the noise level to 1000 and L to 1.

Solution:
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Exercise 10-4 Show that g̃haar[n] and h̃haar[n] are energy-normalized functions.

Solution: From Eq. (10.68) we have

(1/
√

2)2 +(1/
√

2)2 = (1/
√

2)2 +(−1/
√

2)2 = 1.
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Exercise 10-5 Show that HHH −1 =HHH T for Eq. (10.89).

Solution: The product HHH HHH T = I; hence HHH T =HHH −1.
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Exercise 10-6 Show that the normalized Haar scaling function g̃haar[n] in Eq. (10.68) satisfies the Smith-
Barnwell condition given by Eq. (10.113).

Solution: From Eq. (10.57a) we have

|G̃haar(e jω)|= |(1+ e− jω)/
√

2|

=
√

2|cos(ω/2)| · |e− jω/2|

=
√

2|cos(ω/2)|

and |G̃haar(e j(ω+π))|=
√

2|− sin(ω/2)|. Then

|G(e jω)|2 + |G(e j(ω+π))|2 = 2cos2(ω/2)+2sin2(ω/2) = 2.
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Exercise 10-7 Show that Eq. (10.109) with L = 1 holds for the normalized Haar scaling and wavelet basis
functions in Eq. (10.68).

Solution: g̃haar[n] = [1,1]/
√

2 implies (−1)n g[1−n] = [1,−1]/
√

2 = h̃haar[n].
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Exercise 10-8 Show that if g[n] satisfies the Smith-Barnwell condition and h[n] is determined from g[n]
using Eq. (10.109), then h[n] satisfies the Smith-Barnwell condition.

Solution: Scaling function g[n] satisfies the Smith-Barnwell condition Eq. (10.108) if its z-transform G(z)
satisfies G(z) G(1/z)+G(−z) G(−1/z) = 2.

The wavelet function h[n] is determined from the scaling function g[n] using Eq. (10.109), which is
h[n] = (−1)n g[L− n]. The z-transform of Eq. (10.109) is Eq. (10.102), which is H(z) = −G(−1/z) z−L.
Replacing z with 1/z gives Eq. (10.103), which is H(1/z) = −G(−z) zL, and replacing z with −z in
Eq. (10.102) gives Eq. (10.105), which is H(−z) = G(1/z) z−L, since L is odd. Replacing z with 1/z gives
(new) H(−1/z) = G(z) zL, again since L is odd.

Using all of these gives
H(z) H(1/z) = G(−z )G(−1/z)

and
H(−z) H(−1/z) = G(1/z) G(z).

Note that zLz−L = 1. So

H(z) H(1/z)+H(−z) H(−1/z) = G(−z) G(−1/z)+G(1/z) G(z) = 2,

so H(z), as well as G(z), satisfies the Smith-Barnwell condition.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 10-9 Show that D1 Daubechies scaling function g[n] is the normalized Haar scaling function
g̃haar[n].

Solution: Eq. (10.39) is Ghaar(z) = (1+ z−1)Q for constant Q. Inserting into Eq. (10.140) gives Q = 1√
2
.
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Exercise 10-10 Show that D1 Daubechies scaling function g[n] is orthogonal to even-valued translations of
g[n].

Solution: From Table #1,

∑g[n] g[n+2] = g[0] g[2]+g[1] g[3]

= (.4830)(.2241)+(.8365)(−.1294) = 0.

∑g[n] g[n+4] = 0 since g[n] has duration 4. h[n] is also orthogonal to even-valued translations.
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Exercise 10-11 Show that a system with two zeros at z = 1 compresses signals linear in time n to zero.

Solution: If H(z) has two zeros at z = 1, it must have the form

H(z) = (z−1)2P(z) = (z2−2z+1) P(z).

Let x[n] = an+b for constants a and b.

x[n]∗h[n] = x[n]∗{1,−2,1}∗ p[n]

= (x[n+2]−2x[n+1]+ x[n])∗ p[n]

= 0∗ p[n] = 0

since we have

x[n+2]−2x[n+1]+ x[n] = (a(n+2)+b)−2(a(n+1)+b)+(an+b) = 0.
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Exercise 10-12 Show that for separable 2-D scaling and wavelet functions, the 2-D Smith-Barnwell
condition Eq. (10.159) is satisfied if the 1-D Smith-Barnwell condition given by Eq. (10.113) is satisfied.

Solution: Inserting Eq. (10.160) into Eq. (10.159) gives

|G(e jω1) G(e jω2)|2 + |G(e j(ω1+π)) G(e j(ω2+π))|2

+ |G(e j(ω1+π)) G(e jω2)|2 + |G(e jω1) G(e j(ω2+π))|2

=
(
|G(e jω1)|2 + |G(e j(ω1+π))|2

)
|G(e jω2)|2

+
(
|G(e jω1)|2 + |G(e j(ω1+π))|2

)
|G(e j(ωa2+π))|2

= 2|G(e jω2)|2 +2|G(e j(ω2+π))|2 = 4.
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Exercise 10-13 Use LabVIEW Module 10.5 to compress and then decompress the clown image. Use a
threshold of 0.5. What compression ratio does this produce?

Solution: 52.1512.
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Exercise 10-14 Use LabVIEW Module 10.6 to denoise the clown image. Use a noise level of 0.2 and
threshold of 1. Discuss the result.

Solution:
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Exercise 10-15 Use LabVIEW Module 10.7 to inpaint the clown image. Use lambda = 0.01, missing pixel
threshold = 140, and max iterations = 500.

Solution:
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Exercise B-1 Express the following complex functions in polar form:

z1 = (4− j3)2,

z2 = (4− j3)1/2.

Solution:

z1 = (4− j3)2

= [
+
√

42 +32 e− j tan−1 3/4]2 = (5e− j36.87◦)2 = 25e− j73.74◦

z2 = (4− j3)1/2

=
[

+
√

42 +32 e− j tan−1 3/4
]1/2

=±
√

5 e− j18.43◦ .

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise B-2 Show that
√

2 j =±(1+ j).

Solution: √
2 j =

√
2e j90◦

=±
√

2 e j45◦

=±
√

2
(

cos45◦+ j sin45◦

2

)
=±
√

2

(√
2+ j

√
2

2

)
=±(1+ j).
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