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Exercise 1-1  If signal y(7) is obtained from x(7) by applying the transformation y(r) = x(—4¢ — 8), determine
the values of the transformation parameters a and 7'.

Solution: From Eq. (1.5), y(t) = x(at —b) = x(a(t — %)) =x(a(t—T)) where T = Z.

Here, y(t) = x(—4t — 8) =x(—4(t+2)),s0| a=—4and T = 2.
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Exercise 1-2  If x(¢) = and y(¢) = 8¢3, are x(¢) and y(¢) related by a transformation?

Solution:| Yes, [since x(2t) = (2¢)° = 81> = y(1).

Even though y(¢) = 8x(¢), this is not a transformation as defined in Section 1-2.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 1-3 ~ What types of transformations connect x(z) = 4¢ to y(r) = 2(t +4)?

Solution: Let y(r) =x(a(t — T)) for a time-scaling transformation with factor a and a time-shift transformation
with a time delay of T'.
Since x(¢) = 4t, we have y(t) = 4[a(t — T)] = 4at — 4aT. We want y(t) = 2(r +4) = 2t + 8.

So4a =2 and —4aT = 8. This yields| a = % and T = —4.

Then
3(t) = x(a(t - T)) = x <;(t—|—4)> =x(L+2).

Even though y(r) = 2x(¢) + 8, this is not a transformation as defined in Section 1-2.
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Exercise 1-4 Which of the following functions have even-symmetrical waveforms, odd-symmetrical
waveforms, or neither? (a) xi(f) = 3t2, (b) xa(t) = sin(2t), (¢) x3(t) = sin®(2t), (d) x4(t) =4e™", (e)
xs(t) = |cos2t|.

Solution: A function x(¢) has an even-symmetrical waveform if x(—¢) = x(¢). It is symmetric about the vertical
axis.

A function x(7) has an odd-symmetrical waveform if x(—¢) = —x(¢). Reflecting an odd-symmetric function
about the vertical axis, then about the horizontal axis (or vice-versa), leaves it unaltered.

(a) x1(—t) = 3(—1)?> = 3t = x| (1), so x{ (t) has an| even-symmetrical waveform.

(b) x2(—t) = sin(—2t) = —sin(2r) = —x2 (1),

s0 x»(¢) has an| odd-symmetrical waveform.

(c) x3(—t) = sin?(—2t) = (—sin(2¢))? = sin?(2r) = x3(¢),

so x3(t) has an| even-symmetrical waveform.

(d) x4(—t) = 4e" # £x4(t), so the waveform of x4(¢) has| no symmetry.

(e) xs(—t) = |cos(—2t)| = |cos(2¢)| = x5(1),

so xs(t) has an| even-symmetrical waveform.

Note that cos(2¢) also has an even-symmetrical waveform.
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Exercise 1-5  Express the waveforms shown in Fig. E1-5 in terms of unit step functions.

x
o]
- — /(S
0 2 4 ©
-10
(a)
x
54
- I — /(S
0 2 4 ©
_5 -+
()
Figure E1-5

Solution: See Fig. E1-5(a); (a) is shown in the left column; (b) is shown in the right column.
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X(t)=10u(t) for t<2 x(t)=2.5r(t) for t<2

10
0
-10¢t
L L L L L -5 L L L L L
=1 0 1 2 3 4 5 =1 0 1 2 3 4 5
X(t)=10u(t)—20u(t-2) for t<4 X(t)=2.5r(t)—10u(t-2) for t<4
10
0
_’IO L
=1 0 1 2 3 4 5 =1 0 1 2 3 4 5
X(t)=10u(t)—20u(t—2)+10u(t—4) for all t X(t)=2.5r(t)—10u(t—2)—2.5r(t—4)
10
0
_’IO L
=1 0 1 2 3 4 5 =1 0 1 2 3 4 5

Figure E1-5(a) Figure E1-5(b)

(a) x(¢) starts at 0, jumps to 10 at t = 0, stays there until # = 2. Hence, x(¢) = 10u(z) forz < 2.
x(t) drops from 10 to —10 at ¢ = 2, stays until = 4. Hence, x(¢) = 10u(t) — 20u(t —2) fort < 4.
x(t) jumps from —10 to 0 at t = 4 and stays. FINAL:

x(t) = 10u(t) — 20u(t —2) + 10u(t — 4).

(b) x(t) starts at 0, increases with slope 3 = 2.5 until = 2. Hence, x(t) = 2.5r(t) for t < 2.
x(t) drops 5 to —5 at r = 2, then increases with slope 2.5. x(¢) = 2.5r(¢) — 10u(r — 2) for t < 4.
x(t) levels off at 0 at t = 4. FINAL:

x(t) =2.5r(t) — 10u(r —2) — 2.5r(t — 4).
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Exercise 1-6 ~ How is u(t) related to u(—1)?

Solution: u(—t) is simply u(¢) reflected about the vertical axis. So

u(t) and u(—t) are mirror images of one another.

This is true for any function x(t), not just u(z).
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Exercise 1-7  If x(¢) is the rectangular pulse shown in Fig. E1-7(a), determine its time derivative x'(¢) and
plot it.

x(7)
2
| 3 4 — 10
(a) x(®)
x'(7)
1 20(t-3)
t(s)
l —26(t—-4)
(b) x'(2)
Figure E1-7

Solution: In Fig. E1-7(a), x(¢) = 2u(t — 3) — 2u(t — 4). From Eq. (1.25a),

d
o lule=1)] = 8~ 1).

So

X)) =2 = % Ru(t —3) —2u(t —4)] =| 28(t—3)—28(t —4).
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Exercise 1-8  The radioactive decay equation for a certain material is given by n(r) = noe '/, where n is
the initial count at f = 0. If T = 2 x 108 s, how long is its half-life?

Solution: The half-life is the time 7, /, at which

So 11 solves

1 n(t)) o 11/2/2X10°

2 n(0)

Solving this equation gives t; , = —(2 X 10%)log (%) =1.386 x 10® s ~| 4 years.
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Exercise 1-9  If the current i(z) through a resistor R decays exponentially with a time constant 7, what is the

ratio of the power dissipated in the resistor at time # = 7 to its value at t = 0?

Solution: The current is i(r) = i(0) e */*. The power is p(t) = i*(t) R = i?(0) Re~2/*. So p(0) = 2(0) R.
The ratio of powers is

p(t) _2O)ReT
o0 - PR >=| 0.135.
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Exercise 1-10  Determine the values of P,, and E for a pulse signal given by
t—=3
t)=S5rect{ — |.
x(t) rec < 1 >

Solution: x(7)

5 forl<t<s,
0 otherwise.

So S
E:/ |x(t)|2dt:/ 152 dr = 100.
—oo 1

Since E is finite,| P,, =0.

Note that E is invariant to time shifts, so we could have used

2
E= / 5% dt = 100.
-2
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Exercise 2-1  Does the system y(¢) = x*(¢) have the scaling property?

Solution: The scaling property of a system is:

for any constant c.

If x(t)=»| SYSTEM

=>y(1),

then ¢ x(z)=» SYSTEM [=c y(t)

The response to [c x(¢)] is the output [c x(¢)]? = ¢® x*(t) = ? y(t) # c y(1).

So the system

does not have the scaling property.
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Exercise 2-2 ~ Which of the following systems is linear?
(@) y1(r) = [sin(31)] x(2).

(b) y2(t) = a%:.
(©) y3(t) = |x(2)].
(d) ya(t) = sin[x(t)].

Solution: A system is linear if it has both the scaling property and the additivity property. The scaling property
is:

If x(t)=»| SYSTEM [=y(z),

then ¢ x(¢)=» SYSTEM ¢ y(t)

for any constant c¢. The additivity property is:

If x; (l‘)» SYSTEM =y, (l‘)

and x,(t)=»| SYSTEM [y, (1),

then [x; () +x2(¢)]=»| SYSTEM =3[y (z) +y2(2)].

(a) The system is y(¢) = |sin(3¢)] x(¢).
The response to [cx(7)] is the output |sin(3¢)|[c x(¢)] = ¢|sin(3¢)| x(t) = ¢ y(¢).

So the system | has the scaling property.

« x1(1)=>| SYSTEM =y, (1) = |sin(37)| x1 (t).

e xp(¢)=» SYSTEM [=y,(t) = |sin(37)| x2(2).

e [x1(t) +x2(t)]=>| SYSTEM |sin(3t)|[x1(r) +x2(7)].

The response to [x (1) +x>(t)] is the output
|sin(31)[[x1 (1) +x2(¢)] = [sin(31) |x1 (£) + [sin(31) | x2 (1) = y1 () +y2(7).
So the system has the additivity property.

Since the system has both the scaling and additivity properties, | it is linear.

(b) The system is y(t) = a %.
The response to [c x(¢)] is the output

So the system has the scaling property.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



d
« x/(t)=>| SYSTEM =y, (1) :a%.

dx,
o Xz(t)» SYSTEM -}yz(t):a;‘

e [11(t) +xa(1)]=> SYSTEM »a%[xl(z)ﬂz(z)].

The response to [x (1) +x»(z)] is the output

d _ dx dx;
aa[xl(t)—kxz(t)]—adt +adt =y1(t) +y2(1).

So the system has the additivity property.

Since the system has both the scaling and additivity properties, | it is linear.

(c) The system is y(z) = |x(t)].
We show that the system does not have the scaling property.
Trying ¢ = —1 shows that the response to —x(¢) is the output

| =x(0)] = [x(0)[ = y(1) # —y(1).

The system does not have the scaling property. So the system | is not linear.

(d) The system is y(¢) = sin[x(z)].
We show that the system does not have the scaling property.
Trying ¢ = 2 shows that the response to 2x(t) is the output

sin[2x(t)] # 2sin[x(¢)] = 2y(¢).

The system does not have the scaling property. So the system | is not linear.
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Exercise 2-3 ~ Which systems are time-invariant?
(@) y(r) = % +sinfx(r — 1)).

(b) @ =2sin[x(r — 1)] +3cos[x(t — 1)]?

Solution: A system is time-invariant if it has the property that:

If x(z)=»| SYSTEM [=y(t),

then x(r — T)=»| SYSTEM [=»y(t—T)

for any constant 7.

(a) The system is

d
1) = dit‘ +sinfx(t —1)].
The response to x(t — T') is the output
dx(t—T
(x(d[)) +sinx(t—T—1)]=y(t—T).
So the system | is time-invariant.
(b) The system is
d
d% = 2sinfx(t — 1)] + 3cos[x(t — 1)).
Substituting x(t — T') for x(¢) and y(t — T') for y(r) gives
dy(t—T
y(dt) =2sinfx(t — T —1)] +3cosx(t — T — 1)],

which is the system with ¢ replaced witht — 7.

So the system | is time-invariant.
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Exercise 2-4  Determine the impulse response of a system whose step response is

0, t<0
)’step(): t, 0<r<lI1
1, r>1.

Solution: The impulse response is the derivative of the step response:

dystep
h(t) = ——.
(1) =—
For the given ygp(?), we have:
d0
3, tSO
4 2” 0, 1<0
h(ﬂz%z d—i, 0<tr<1=<{1 0<r<]1
a s vt
dt7 puiy

This rectangular pulse can be written succinctly as | h(f) = u(t) —u(t —1).
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Exercise 2-5  The RC circuit of Fig. 2-5(a) is excited by x(¢) = (1 — 1000¢)[u(z) — u(t — 0.001)].

: — 1
Lo 1+
X * i c LoD
Lt T FS
[ —— o
Input System Output

(a) RC circuit
Figure 2-5(a)
Compute the capacitor voltage y(¢) for t > 0.001 s, given that 7, = 1 s.

Solution: x(¢) is a very short wedge-shaped pulse (Fig. E2-5). Its duration of 0.001 s is much less than 7. = 1 s.

x(7)

t (ms
Figure E2-5

So the response y(¢) of the RC circuit to x(z) will be, for 7 > 0.001 s, the same as its response to an impulse
having the same area as the pulse. The area under the wedge-shaped pulse is %(1)(0.001) =0.0005. The impulse

response of the RC circuit is

h(t) = 1 e u(t) = e ulr).

Te

So the response y(z) is, for r > 0.001, y(¢) = 0.0005¢ " u(t).
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Exercise 2-6  Apply graphical convolution to the waveforms of x(¢) and A(¢) shown in Fig. E2-6 to determine
y(t) = h(r) *x(1).

x(t) h(t)
44 44
37 x(?) 3T
2T 2+ h(?)
1+ 1+
0 : 1(s) 0 —i—|—.—> t(s)
Figure E2-6

Solution:

4 forl<t<?2
x(1) = .
0 otherwise

T forO0<t<3
h(t) = .
0 otherwise

Notethat 0 < (t—7) =t <rtand (t—7) <3 = (t—3) < 1.

44
3T x(7)
h(-7) 2T
1--
g R N N AP

(a) Atr=0, overlap=0
Figure E2-6(a)

Fort <1: N
/ x(t)h(t—1)dT=0

(there is no overlap).

x(7)

-7 t=1s

— SN W

i

I S T B B

(b)Att=1s, overlap=0
Figure E2-6(b)
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For1 <r<2:
) !
/ x(r)h(t—f)d’f:/4(t—r)dr=2t2—4t+2.
o 1

This is the area of the blue triangle in Fig. E2-6(c).

44
3T x(7)

h(2 - 29

-9 t=2s
1

— — T

-3 2 -1 1 2 3 4 5

(c)Att=2s,overlap=1/2x4=2
Figure E2-6(c)
For2 <r <4:
/m (D)t — 1) dt = /124@1) dt =4 —6.
This is the area of the blue triangie in Fig. E2-6(d) and Fig. E2-6(e).

® x(7)
2+ t=3s
| | h(3 —‘L')

——t — T

-3 -2 -1 1 2 3 4 5

(d)Att=3s,overlap=1.5x4=6
Figure E2-6(d)

44
t=4s
2 -

h(4—1)

32 -1 1 2 3 45

(e)Att=4s,overlap=2.5 x4=10
Figure E2-6(e)

For4 <t <5: )
/ (7) bt — 1) dT:/ 41— 1) dt = —22 + 81+ 10.
—oo -3

Fort > 5: ,
/ X(7) h(t — 1) dT =0

(there is no overlap).
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T Mo
3--
t=5s
2T (5 —1)
l-..-
N R N N IR

() Att=5s, overlap=10
Figure E2-6(f)

Check: If there are no impulses, the result of a convolution should be a continuous waveform. The above
expressions agree at the endpoints t = 1,2,4,5 of each of the above intervals. The result is plotted in Fig.
E2-6(g). The maximum is y(4) = 10.

)

10+
8 -+
6+ Output response
44
24

RN EEE
(2) ¥(1)
Figure E2-6(g)
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Exercise 2-7  Evaluate u(r)*8(t —3) —u(t —4)x6(t +1).

Solution: Using convolution property #6 in Table 2-1, u(t) * 6(t —3) = u(t — 3) and u(t) * 6(¢) = u(t).
Then using convolution property #5 with 71 =4 and 7, = —1, we obtain

ut—4)x8(t+1)=ut—4+1)=u(t—3).

So

w(t)+8(r—3) —u(t—4)+ 8 +1) = u(t —3) —u(t—3)=| 0.
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Exercise 2-8  Evaluate tlim le™3 u(r) * u(r)].
—>00

Solution: Let y(t) = e 3 u(t) xu(t).
Using convolution property #9 in Table 2-1,

y(t) = /:oe_” u(t)dt = /Ote_% dt = %(1 —e ) ult).

Then

Jim (¢~ u(r) <u(r)) = limy(r) =| 5.
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Exercise 2-9 A system’s impulse response is A(t) = u(t — 1) /t*. Is the system BIBO stable?
Solution: The system is BIBO stable if and only if it is absolutely integrable:

| intoyyar

u(t—1)
%)

is finite. Here,

oo

dt -1
= =1 <oo.

dt= | 5 =—
‘ 112 t

/_Z|h(t)\dz:/_°;

So the system | is BIBO stable.

1
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Exercise 2-10 A system’s impulse response is i(t) = u(t — 1) /1. Is the system BIBO stable?
Solution: The system is BIBO stable if and only if it is absolutely integrable:

| intoyrar

u(t—1 < dt -
0= [ =gl

is finite. Here,

/:m(t)\dz:/;

So the system | is not BIBO stable.
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Exercise 2-11 A system’s impulse response is
h(t) = 3+ j4)e T u(t) + (3 — ja)e TR ().

Is the system BIBO stable?

Solution: The impulse response has the form

N
h(t) = ;C,-ew u(t).

The system is BIBO stable if and only if all of the exponential coefficients ¥; in the impulse response have
negative real parts. Here, the real parts of —1+ j2 and —1 — j2 are both —1, which is negative.

So the system | is BIBO stable.
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Exercise 2-12  cos(t)=»| h(t) =e 'u(t) [=?

Solution:

Acos(wt +¢)=»| H(w) F=»|H(w)|Acos(wt+¢+6)

where 8 = ZH(®). Here, A= 1, ® = 1 rad/s, ¢ = 0, and the frequency response function H(®) is

N °° . ° ; 1
(o) = / h(t) e 1" di = / e eI g —
—oo 0 jo+1
At @ =1 rad/s,
A 1 1 - o
Hl)=—— = = .
(n j1+1 V2
So the output is \iﬁ cos(tr —45°).
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Exercise 2-13  2cos(t)=»| SYSTEM p=2cos(2r)+ 2. Initial conditions are zero. Is this system LTI?

Solution: No. The response of an LTI system to a sinusoid at a given frequency is another sinusoid at that
same frequency. This is a crucial property of LTI systems.
An LTI system cannot create a sinusoid at a frequency different from that of its input.

This system has created sinusoids at frequencies @ =0 and @ = 2, so it| is not LTL.
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Exercise 2-14  cos(2t)=»| SYSTEM 0. Can we say that the system is not LTI?

Solution: | No. [An LTI system can eliminate a sinusoid at a given frequency.

An LTI system cannot create a sinusoid at a frequency different from that of its input.
For example, the system could be the LTI system

d*x

W+4x,

() =
since if x(1) = cos(2¢), then

d2
Y1) = de +4x = —4cos(2t) +4cos(2t) = 0.

But we do not know this.
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Exercise 2-15  Which damping condition is exhibited by A(¢) of

d’y dy dx
—= 45 =—+4y(t)=2—.
a? Car " ¥(t) dt
Solution: The general second-order LCCDE is
d’y dy dx
— — t) =b1— +byx(t).
dt2+aldt+a2y<) 1dtJr 2 %(t)

We read off a; = 5 and a, = 4. Note that by = 2 and b, = 0 are irrelevant as far as the damping condition
is concerned.
Then ot =a;/2=5/2=25s"1, = /az =V4=2radls,and §{ = a/ay =2.5/2=1.25.

Since & = 1.25 > 1, the system is | overdamped.
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Exercise 2-16  For what constant a; is

critically damped?
Solution: The general second-order LCCDE is
d?y dy

a2 TNy

dx

t)=>b
+ay y(1) '

—|—b2x(t).

We read off ap = 9. Note that b; = 2 and b, = 0 are irrelevant here.
Then a =a;/2and @y = /a3 = V4=2and & = a/ay = (a1/2)/3 = a, /6.

The system is critically damped if 1 =& =a; /6, or| a; =6.
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Exercise 2-17  Use LabVIEW Module 2.2 to compute the wavy pavement response in Example 2-19 and
shown in Fig. 2-30.

Solution:
Car Response Car Movement (lrourl.d mass (ka)
= —_
5 500 800 1000 1200 1500
spring corstant {(N/m)
4+ __
3- 500[)0 }"‘000 100000 125[}00 150003
- damping (Ns/m)
LI L 1 bLUp
z L- 5000 10000 15000 20000
2
a (-
=
g
_2'_
-3
4~
_5_
_b—l
(] 005 015 0.25 0.3 035 04 045 0.5
Tirme (53
Shape
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Exercise 3-1
Chapter 1].

Solution:
(a) [sin eyt] u(r)

Application of the identity

sin Wyt =

X(s)

D) rt—T)=0—-T)u(t—T)

X(s)

Using the integral relation

we have

Determine the Laplace transform of (a) [sin(@y?)] u(t), and (b) r(t — T) [see ramp function in

ejw()t — e*j(l)()l
2j ’

1/°°
2jJo

e/ S g — —

! /we_jw”’e_“ dt
2jJo

1 [ elim=s)t  —(atsi \ |~

2j \Jjoo—s —(jao+s) /|

1 —1 —1 o

A - . + . == B 2
2j \jwo—s jwy+s 52+ o

/w(t—T) Wi —T) e di

o
= teSdt— / Te S dt.
T T

/xe“x dx = f (ax—1)
= ,
s (—st—=1)| +—e*
S T S T
(ST 1T e st
= e —_— _—— =
s2 s s s2
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Exercise 3-2 Determine the Laplace transform of the causal sawtooth waveform shown in Fig. E3-2
(compare with Example 1-4).

x(?)
10V T
0 t(s
2 4 6 ©
Figure E3-2

Solution: The sawtooth waveform is given by

x1(t) =5t{u(t) —u(t —2)] V, for cycle 1,
x(t) = i 5 —2n)u(t—2n)—u(t—2(n+1))] Vv,  forall cycles.
n=0

Correspondingly,

. 2 5
X, (s) = /0 Ste™ dr = = [1— (25+1)e ™),

4
Xs(s) = / S(1—2)e ™ d.
2
Ifweletx=1r-—2,

2
Xo(s) = /0 S5xe e dx
= e B X (s).

Similarly, for the mth cycle,
Xn(s) =e "™ X (s).

Hence,
X(s) =X (s) (1+e B4e 440

Using the series expansion

1
1+x+x2+: R
1—x
we have
Xl(S)
X(S) - 1—e 2
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Exercise 3-3  Determine the poles and zeros of X(s) = (s+a)/[(s +a)* + @3]

Solution: The zeros are the roots of the numerator polynomial set equal to zero.

(s+a)=0=»| z=—a+ jO.

The poles are the roots of the denominator polynomial set equal to zero.

[(s+a)>+ a)g] =0=»| p; =(—a—jwy) and py = (—a+ jay).
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Exercise 3-4  Determine & {[sinwy(t — T)] u(t —T)}.
Solution: According to Exercise 3-1(a),

. )
Application of the shift property given by Eq. (3.16)
x(t—T)u(t—T) <> e 5X(s)

leads to

Wo

sinay(t —T t—T) <> s |
sinay(t —7)] u(t —7) T
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Exercise 3-5  (a) Prove Eq. (3.20) and (b) apply it to determine Z’[e~“ cos(ayt) u(?)].

Solution:
(a) If
x(t) > X(s),

then

/7 e x(t)e M dt = /7 x(t) e T g

oo

= [ x(t)e " dt
0
=X(s)
=X(s+a),
where we temporarily used the substitution
s =s+a.
Hence,
e x(t) «> X(s+a).
(b) Since
[cosapt] u(t) <> s
2+’
it follows that ( )
s+a
e “cos(wpt) u(t) > ———"— .
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Exercise 3-6  Determine the initial and final values of x(¢) if its Laplace transform is given by
s>+ 6s+18
X(s) = —————
(s) s(s+3)?
Solution:

x(0") = lims X(s)

S—ro0

B s +6s+ 18
soeo (s43)2

x(es) = lims X(s)

i s2+6s+18
= 11m -—--F—=
s—oo (s+3)2
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Exercise 3-7  Obtain the Laplace transform of: (a) x; (£) =2(2—e ") u(t) and (b) x2(¢) = e~ cos(2¢ +30°) u(t).

Solution:
(a)

x1(t) =2(2—e ") u(t)
= (4—2e7") u(t).

By entries #2 and #3 in Table 3-2,
4 2 ds+4—-2s  2s+4

X)) =551~ s(s+1)  s(s+1)°
(b)
x2(t) = e cos (2t 430°) u(t)
= e x,(1),
with

Xq(t) = cos (2t +20°) u(t).
Applying entry #12 in Table 3-2 gives

scos30° —2sin30°  0.866s — 1
Xals) = s? +4 T 9244

Application of property #5 in Table 3-2 leads to

Xa(s) = Xu(s +3)
~ 0.866(s+3)— 1
 (s+3)2+4

0.866s+ 1.6
s24+6s+13 °
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Exercise 3-8  Apply the partial-fraction expansion method to determine x(¢), given that its Laplace transform

' 10s+ 16
X(s): s S +

(s+2)(s+4)
Solution: By partial-fraction expansion,

Aq Ay Ajz
X(s)=—+——+4+—,
(s) S +s—|—2 s+4

with
A; =sX(s)[s=0
~ 10s+16 _5
T (s+2)(s+4) |
A2 = (S+2) X(S)|S:_2
10s+ 16 —20+16
= = = 17
s(s+4) = —2(2)
Az = (s+4) X(8)]s=—4
10s+ 16 —40+16
s(s+2) |y —4(-2)
Hence,
2 1 3
XS)=-—+———
(s) S +s—i—2 s+4’
and

x(t) =| [2+e7* =3¢ u(t).
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Exercise 3-9  Determine the inverse Laplace transform of

48 — 155 — 10
X(s) = —————
(s) (s+2)3
Solution: ,
48 — 155 — 10
X(s) = ——————
(s) (s+2)3
By partial-fraction expansion,
B, B, B3
X =
O =2t 22t o1
with
Bs=(s+2)°X(s)| __,
=4s’—15s— 10| __, = 16+30—10=36,
d 3
By=— [(s+2° X()l|__,
d 2
= (4> — 155 —10)| __, =8s—15];—_» = =31,
1d  ,
Bi=5 -3 (48> —15s—10)| _ , =4
Hence,
4 31 36

X(s)

By entries #3, #6, and #7 in Table 3-2,

512 4272 T st2p

x(t) = (431t +18%) e u(r).
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Exercise 3-10  Determine the inverse Laplace transform of

2s+ 14

X(s)= o
(s) s2 +6s+25

Solution:

_ 2s+14
~ s2465+25
2s+14
(s+3—j4)(s+3+j4)

X(s)

By partial fraction expansion
B, B]

X(s) —
=3t s

with

By = (s+3—j4) X(8)]s= 34 s
_ (2s+14)
(s+3+j4) =314
—6+j8+14 i45°
_ +_] + :l—j:\ﬁe_ﬂ‘s-
j8
Hence,
V2 e 450 /2 e
X(s) = . ik
s+3—j4 s+3+j4

By entry #15 in Table 3-2,

x(t) =| [2v2e 3 cos(dt —45°)] ult).
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Exercise 3-11 s the system with transfer function

s+1

HE) = 36— )

BIBO stable?
Solution: An LTI system is BIBO stable only if all of its poles are in the left half-plane.

The poles are the roots of the denominator polynomial set equal to zero.
(s+ j3)(s— j3) = 0=»p = +3. These poles are on the imaginary axis e[s|] = 0, so they are not in the

LHP, and the system is not BIBO stable.

In fact, the response to the (bounded) input x(¢) = cos(3¢)u(t) is the (unbounded) output

y(f) = 0.167cos(31 — 1.5708) u(r) +0.527 cos (3 — 0.328) u(t),

which blows up as t — oo.

This can be derived as follows:

X(s) = ZL[x(1)] = L]cos(3t) u(t)]

s s
Cs2432 (s+j3)(s—j3)°

Then
s+1 S
Y(s) = H(s) X(s) = (s—j3)(s+j3) (s—j3)(s+ j3)
s?+s s’ +s

(s—j3)2(s+j3)2  s*+18s2+81"
The partial fraction expansion of Y(s) is

A A* B B*

Y(s) = .
O =B s 3 Gopr G ar
The residues A and B can be computed as follows:
s?+s

— — i3)?|._.;

(st s oS

(3)2+j3  —9+3 .
= (3+73)° =35 0.25 — j0.0833,

2
A:i[ .s +s .
ds'(s+j3)*(s—j3
(s+j3)%[2s+1] — [sz+s]2(s+j3)| .
(s+ j3)* =73
i6)2[1+ j6] — [—9+ j3]2(j6
_ (J6)[1 + 6] _[4 +J320 ):_j0_0833.
(j6)
The residues A and B can also be computed using MATLAB or Mathscript:
[R Pl=residue([1 1 01,([1 0 18 0 811]).The outputis

7 (s —J3)]s=j3

-0.0000 - 0.08331 -0.0000 + 3.00001
R= 0.2500 - 0.08331 P= -0.0000 + 3.00001
-0.0000 + 0.08331 -0.0000 - 3.00001
0.2500 + 0.08331 -0.0000 - 3.00001
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Inserting these values,

~ —j0.0833 0.25—;0.0833  j0.0833  0.25+ j0.0833

Y(s) —
(s) s— 3 (s— j3)? st /3 (s+ j3)2

The inverse Laplace transform of Y(s) is

y(t) = —j0.0833¢7" u(t) + (0.25 — j0.0833)te’> u(t)
4 j0.0833¢ 7" u(t) + (0.25 4 j0.0833)te /> u(t).

This can be simplified using the formula
AP +A*e ™ =2|Ale"R cos(pit + 6),

where p = pr + jprand A = |Ale/®.

Here, we set
—j0.08333 = 0.0833¢ /17708,
0.25 — j0.0833 = 0.2635¢ /03281
and
p=0+ 3.
This gives

y(t) =| 0.167cos(3t —1.5708) u(t) 4+ 0.527¢ cos(3t — 0.328) u(t).
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Exercise 3-12 s the system with transfer function

(s+1)(s+2)(s+3)
(s+4)(s+5)

H(s) =

BIBO stable?

Solution: An LTI system is BIBO stable only if its transfer function is proper or strictly proper:
The degree of the numerator is equal to or less than the degree of the denominator.
For H(s), the degree of the numerator is 3 and the degree of the denominator is 2.
So the transfer function is improper, and the system is not BIBO stable.
To illustrate, the response to the (bounded) input x(7) = u(r) will include an (unbounded) impulse, since

(s+1)(s+2)(s+3)1 03 1.5 4.8
Y(s) =H(s)X(s) = = == _
) ($)X(s) (s+4)(s+5) s s+4  s+5
using MATLAB or Mathscript as follows:
[R P K]l=residue(poly([-1 -2 -3]1"),poly ([0 -4 =-5]").

Then
y(t) =L H(s)] = 8(1)+ 0.3 u(t) + 1.5¢~ u(t) —4.8¢~ u(t).

Even though all of the poles are in the left half-plane, the system is| not BIBO stable.
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Exercise 3-13 A system has the impulse response

Find its inverse system.
Solution:

| 2 _s+3 2 _s+l
~ s+3 s+3 s+3 s+3’
1 s+3 2
G :7:7:1 —
(s) H(s) s+1 +s+1
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Exercise 3-14  An LTI system has impulse response /(t) = 3e"u(t) — 2¢~*u(t). Determine the LCCDE
description.

Solution: First, compute the transfer function H(s):

3 s+2 2 s+1_ s+4

H(s) = Zh()] = st1s+2 s+2s+1  (s+1)(s+2)

Next, set H(s) = % and cross-multiply:

Y(s) s+4
X(s) (s+1)(s+2)
= X(s)(s+4)=>Y(s)(s> +3s+2) = X(s) (s + 4).

=>Y(s)(s+1)(s+2)

Finally, take the inverse Laplace transform to yield:

d*y _dy

3 2
dr? dt Y dt
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Exercise 3-15  Compute the impulse response of the system described by the LCCDE

d’y . dy
S 5% p 4y =3n
dt2+ dt+y o

Solution: Read off the transfer function H(s) from the LCCDE coefficients and compute its partial fraction
expansion:
3 1 1

T 245s+4 s+l s+4’

H(s)

Then

h(t) =2 [H(s) =| e ult)— e u(t).
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Exercise 3-16  Compute the poles and modes of the system with LCCDE

d’y dy dx
—= +3—42y=—+2x.
dt2+ dt+y dr+x

Solution: Taking the Laplace transform of the LCCDE gives
Y(s)(s*+3s+2) = X(s)(s +2).

The modes are the roots of the polynomial multiplying Y(s):

s> +3s+2=0={—1,-2} are the modes of the system.

The transfer function is

Y(s) s+2 s+2 1

X(s) s2+43s+2 (s+1)(s+2) s+1°

H(s) =

The poles are the roots of the denominator polynomial:
s+1=0= {—1} is the pole of the system. Note {poles} C {modes}.
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Exercise 3-17  Compute the zero-input response of % +2y= 3?1—’; +4x with y(0) = 5.

Solution: For the zero-input response, set x(z) = 0. The LCCDE becomes % +2y=0.
This has the general solution y(¢) = Ce™% u(t) for some constant C.

y(0) =5==| y(t) =5¢ %u(t) |is the zero-input response.
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Convert the circuit in Fig. E4-1 into the s-domain.
L R,
A1k WA

Ry

Exercise 4-1

C—_=voc

vs(?)

Figure E4-1

Solution:
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Exercise 4-2  Compute the s-domain impedance of a series RLC circuit with zero initial conditions. Simplify
the expression to a ratio of polynomials.

Solution:
The s-domain impedance of the resistor is Zg(s) = R.
The s-domain impedance of the inductor is Zy (s) = sL.
The s-domain impedance of the capacitor is Z¢(s) = 1/(sC).
The impedance of the series connection is the sum of the impedances:

2 R 1
S +ZS+E

Z(s) =Zr(s)+Zyr(s) +Zc(s) =R+sL+1/(sC) = s/L
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Exercise 4-3 A mass is connected by a spring to a moving surface. What is its electrical analog?

Solution: The mass becomes a capacitor, the spring an inductor, and the surface a voltage source.
So the electrical analog is a series LC circuit driven by a voltage source, the same as the circuit in Fig. 4-
7(b), but without the resistor.
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Exercise 4-4  What do you expect the impulse response of the system in Exercise 4-3 to be like?

Solution: The impulse response of an LC circuit is

h(r) = Acos <\/%C + e> u(t)

for some A and 6.
This is a pure oscillation without damping (there is no resistor).
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Exercise 4-5  In the SMD system shown in Fig. E4-5, v.(t) is the input velocity of the platform and v, (z) is
the output velocity of mass m. Draw the equivalent s-domain circuit.

Vy(t)

T

200 kg

N-s N (f)
500 —[ - | 1500 —

Figure E4-5
Solution:
_Ss__s
L=k = 1500
1IN
VWA +
_1__1
b~ 500 O |
v e A%
<(8) T5C ~sm - 2005 O
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Exercise 4-6  In the SMD system shown in Fig. E4-6, v.(t) is the input velocity of the platform and v, (z) is
the output velocity of mass m. Draw the equivalent s-domain circuit.

Vy(t)

N N-s N Vx(l)
300 500 — - | 1500 —

Solution:
_s__s§
L= 4 = 1300
A11%
AAA +
_1__1
b= 500 o
+\vy _S_ 4 _ 2 __1 vy
MPALSY 300% T5C w700 O
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Exercise 4-7  What is the amplitude of the head displacement for the person in Example 4-7, if the seat
displacement is x1(t) = 0.02cos(10¢) (m)?

Solution:

v (t) =dx; /dt

= —0.2sin(10¢) = 0.2cos(10¢ +90°) (m/s);
va(r) = 0.2 x 4.12cos(10f +90° — 116.1°)

= 0.824cos(10t —26.1°) (m/s);

t
xa(t) = / V4(7) d7 = 0.0824sin(107 —26.1°) (m);

amplitude = 8.24 cm.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 4-8

Obtain the transfer function of the op-amp circuit shown in Fig. E4-8.

4 uF 5 uF
u
i 5kQ | —
Dout, 1 MQ
— Dout,
Vae=%10V
Vae=%10V
Figure E4-8
Solution: The circuit consists of two integrators connected in series.
The transfer function of an integrator op-amp circuit is
-1
H(s) = — .
(s) SRC
So
-1 —1 10

H(s) =

(4 uF)(5kQ)s (5 uF)(1 MQ)s  s2
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Exercise 4-9  How many op amps are needed, as a minimum, to implement a system with transfer function
H(s):s%a, where a,b > 0?

Solution: Use the one-pole configuration in Table 4-3 with

1
a=—:"
R:C;
and |
b= .
R,Cy
Given any value of Cy, set
1
Ri=—
e
and .
Ri=—.
f aCf
But this implements s_TIZ’ not erLa'

So we need a second op amp with a gain of (—1) to implement an inverter to get S%a .

Hence, we need| 2 op amps
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Exercise 4-10  Using Direct Form II, determine how many integrators are needed to realize the system with
transfer function
B 283 +3s> +4s+5

H(s) = .
(s) s3+8s2+7s+6

Solution:

%
z

g
Y

> 2 > > > Y(s)

g
A
o0
A
= | —  — | — | —t—n | —  <4=@
4
w
4
g
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Exercise 4-11  What is the minimum value of the feedback factor K needed to stabilize a system with transfer
function

1
H(s) = ———-—=7?
(s) (s+3)(s—2)
Solution:
H(s) 1 B 1
o (s+3)(s—2) s2+s—6
The closed-loop transfer function is
H(s)  1/(s*+s—6) 1

Qls) = 1+KH(s) 14+K/(s>4+s—6) s24+s—6+K

A quadratic polynomial has both of its roots in the open left half-plane (OLHP) if and only if all three

coefficients have the same sign. So we need| K > 6.
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Exercise 4-12  What values of K can stabilize a system with transfer function

1
H(s)=——+——7?
(s) (s—3)(s+2)
Solution:
H(s) = 1 B 1
C (s—3)(s+2) s2—s—6"
The closed-loop transfer function is
H(s)  1/(s*—s—6) 1

Q(s) =

 14+KH(s) 1+K/(s2—s—6) s2—s—6+K"

A quadratic polynomial has both of its roots in the open left half-plane (OLHP) if and only if all three

coefficients have the same sign.
The quadratic and linear term coefficients have opposite signs: 1 and —1.
So at least one of its roots is not in the LHP, and the system is unstable.

No value of K can stabilize the system.
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Exercise 4-13 ~ What is the time constant of an oven whose heat capacity is 20 J/°C and thermal resistance
is 5°C/W?

Solution: The time constant is

1
%= =RC=(201/°C)(5°C/W) = 100 /W =| 100.
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Exercise 4-14  What is the closed-loop time constant when feedback with K = 0.04 s~! is used on the oven
of Exercise 4-13?

Solution: Using Eq. (4.122b),b=a+K = ﬁ +0.04 = 0.05. The closed-loop time constant is| 20 s.
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Exercise 4-15  Use LabVIEW Module 4.1 to compute the oven temperature responses shown in Fig. 4-32,
using values given in the text.

Solution:
Oven Response ramp without feedbark
3.0- RC
/7 ramp with feadback .
. 25+ / cos without feedback /" 1020 40 60 80 100
E J0- // cos with feedback avs I
|2
; // step without feedback W
= [ I N I R A |
g 15 step with feedback [ 01 1 2 3 4 5
w
£ L0- K
& . S
0.5- O
0.01 005 0.1 015 0.2
0.0- ' 0 5 I . Perind
0.0 10C.0 200.0 300.0 40C.0 500.0 . SE—
Time(s) 100 150 200 250 300
Power Input
1.1+ ramp Ramp
D S—
cos | AR L R L ;
L_|
:‘F: s W 0 0.0025 0.003
= stop
)
;
o] STOF
N 10
g
5]
£
oy
0.9- g g . : :
0.0 10C.0 200.0 300.0 40C.0 500.0
Time(s)
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Exercise 4-16  In open-loop mode, an op-amp circuit has a gain of 100 dB and half-power bandwidth of
32 Hz. What will the gain and bandwidth be in closed-loop mode with K = 0.01?

Solution: Converting units, 100 dB = 10° and 32 Hz corresponds to @ = 2732 = 200 rad/s.
So the gain-bandwidth product of the amplifier is GBP =2 x 107,
The closed-loop dc gain is % = 100.
The closed-loop half-power bandwidth is

2 x 107
100

=2 x 10’ rad/s,

which is equivalent to | 32 kHz. | The closed-loop gain is 2 x 107 /2 x 10° = 100, which is equivalent to

40 dB.
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Exercise 4-17  Compute the steady-state step response tlim Ystep(¢) for the BIBO stable system with transfer
—»00

function
2s% 4+ 3s+4

H(s) = .
(s) 583 +6s2+7s+8

Solution: We can avoid computing a partial fraction expansion by using the Final Value Theorem.
Since ZLu(t)] = 1/s, we have

1
ZLysiep(t)] = Ysep(s) = H(s) s
The Final Value Theorem gives
lim e (1) = lim's Yeep(s) = lims H(s) + = H(0) = & —| 1
fimse(t) =l Vue(s) = s H) S =HO) = =) 5.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 4-18  In Example 4-13, suppose a = 101, » = 100 and K; = 1. Compute K, so that the closed-loop
system is critically damped using PD feedback.

Solution: The closed-loop transfer function for the motor is given in Eq. (4.148) for proportional feedback,
G(s) = K. If PD feedback is used instead, Eq. (4.148) should be modified to

b

Qls) = s’ +as+bG(s)’
with G(s) = K| + K;s.
Inserting the given values,

100 100

Q) = 557015+ 100(1+Kps) 82+ (101+ 100K;)s+ 100 °

The closed-loop system is critically damped if the denominator polynomial
s> + (101 + 100K )s + 100]
has a double root. This happens if

%+ (1014 100K3)s + 100 = (s + 10)* = (101 + 100K,) = 20 = K> = —0.81.

The impulse response is then i (1) =2 [Q(s)] =| 100te™"% u(r).
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Exercise 4-19  Using proportional feedback with K = L+0.2, compute the response to input x(¢) = 0.01u(z).
Solution: From Eq. (4.170), the closed-loop transfer function is

Y P s -
(L-K)s2—g —0.2s2-9.8 s2+49
Then 52 0.01  0.05s
0(5)=Q)X(8) = G55 “ 9749
and

0(1)=2""[0(s)] =| 0.05cos(7t) u(t),

which is oscillatory.
Note the amplitude 0.05 is small enough for the linear model to be valid.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 4-20  Using PI feedback, show that the closed-loop system is stable if K1 > L and K, > 0.

Solution: PI feedback means that G(s) = K; + K3 /s. The closed-loop transfer function is given by Eq. (4.177)

as

—s2

(L—K))$?—Kys—g
The closed-loop system is BIBO stable if all three coefficients of the denominator polynomial have the
same sign, so its roots are in the LHP. If K; > L and K, > 0, then all three coefficients are negative, and the

Q(s) =

closed-loop system | is BIBO stable.
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Exercise 4-21  Using PI feedback with K; = L+ 0.2, select the value of K; so that the closed-loop system is

critically damped.

Solution: PI feedback means that G(s) = K| + Kz /s. From Eq. (4.177), the closed-loop transfer function is
_g2

(L—K1)52 —KQS—g '

Q(s) =

Inserting K; = L+ 0.2 gives

—s? -5 55>

Q(s) = —0282—K»s—9.8 -5 T2y SKrs+49 -

The closed-loop system is critically damped if it has a double pole.

This happens if s> +5Kys +49 = (s +7)> = 5K, = 14 = | K, =2.8.
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Exercise 4-22  Use LabVIEW Module 4.2 to compute the inverted pendulum responses shown in Fig. 4-38.
Solution:

0.001*Step Response P A B A L =0.6125m K (m/radian)

O —
2 R
07 1 1.25 1.5 175 2
1.55|
K1 {m/radian)
" G S
T ]
0.5-] 0.7 1 1.25 1.5 1.75 2
3
& o K2 (m/sec/radian)
< .
0,0.57 | I I I ]
o 1 2 3 4 5 6 7 8 9 10
-1
154 saE Period (sec)
A
2 | ‘ ‘ | ‘ ‘ | | ‘ ‘ 0‘5.1.2‘3;;
o 05 115 2 25 3 35 4 45 5 STOP
Time (s)
0.001*Ramp Response P\ Pl 0.001*Cosine Response P |/ Bl 1
0.16-] 1.75-]
0.14- 1.57
1.25-]
0.12-] 1-
0.1 0.75-|
[—d —|
g 0.08- g e
. B 0257
E o6 E a
© © o
0.04-] -0.25-|
0.02- 057
0.75-|
0| -
-0.02, | 1 | | 1 | 1 1 | | 1257, 1 1 1 | | 1 1 1 | |
0 05 1 15 2 25 3 3.5 4 45 5 0 0.5 1 15 2 25 3 5 4 45 5]
Time (s) Time (s)
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Exercise 5-1  Obtain the Fourier-series representation for the waveform shown in Fig. E5-1.

x(7)
10l
0
. —
% 2 0 2 e
-10
Figure ES5-1

Solution: For the cycle from t = —2 s to t = 2 s, the waveform is given by

5t for —2 <t <0,
x(t) =
10 — 5¢ for 0 < <2.

With Ty =4 s and wy = 27t /Ty = 7 /2 rad/s,
1 2
ap = —/ x(t) dt

To J 2
1 0 2

—[/ 5tdt—|—/(10—5t)dt]—0,
4|/ 0

2 To/2

:TO ~To/2
1[0 t 2 t
=3 [/ZSICOSH;r dt—&-/0 (10—5t)c0s% dt].

Using the integral relationship given in Appendix C-2 as

an x(t) cosnayt dt

1 X .
/xcosax dx = — cosax+ —sinax,
a a

we have
20

= W (1 —COSVle).

an

Similarly, using the relation

. I . X
xsinax dx = — sinax = — cosax,

a? a
we have
b z/m () sinnayt d
= x(t) sinnayt dt
=0 ) s @y
1] /0 Tt 2 mt
:2[/25tsinnzdt+/0 (10—5t)sin’12dt}
10
=—(1- ).
nn( COSNT)
Hence,

— | 20 mt 10 it
x(t) = Zl [nzﬂ:z (1 —cosnn)cos%—i-ﬁ (1 —cosnm) sinnz].
n=
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Exercise 5-2  Obtain the line spectra associated with the periodic function of Exercise 5-1.

Solution:
cn =/ a+ b2
20 ) 2y 1/2
= { Lzﬂz (1 —cosn?t)] + [n (1 —cosmr)] }
0 n’m?
—(1— 1
(1 —cosnm) 0 + 1
b
O, = —tan~! <">
Ay
= —tan"! (@) .
2

We note that ¢,, = 0 when n = even.
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Exercise 5-3 A periodic signal x(z) has the complex exponential Fourier series
x(1) = (=24 j0) + (3+ jd)e’ + (1 + j)e*
+(3—jd)eH +(1—je ™.
Compute its cosine/sine and amplitude/phase Fourier series representations.

Solution: Using the relations in Table 5-3, we can assemble the following table:

n | nwy Xn Xn Cn=2[Xp| | On = L%y | ayn =cncos@y, | by = —c,sing,
0| 0 —2 | 26/18%” 2 180° -2 0

1| 2 |3+j4]| 565 10 53° 6 -8

20 4 | 14j | V2ei* 2V2 45° 2 -2

Amplitude/phase representation:
x(t) = =2+ 10cos(2t +53°) 4+ 2v/2 cos (41 +45°).
Cosine/sine representation:
x(t) = =2+ 6cos(2t) — 8sin(2t) + 2 cos(4t) — 2sin(4¢).

Note that x, = %(an — jb,) for n =1 and 2 but |xg| = ¢, not ¢y /2.
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Exercise 5-4  (a) Does the waveform x(z) shown in Fig. E5-4 exhibit either even or odd symmetry? (b) What
is the value of ag? (c) Does the function y(z) = x(#) — ag exhibit either even or odd symmetry?

x(7)

—_— 0—|——' —t+—— 1 (s)
4 -3-2 -1 I‘F)l 234 5 6

Figure ES-4
Solution:
(@)

x(t) # x(—t) no even symmetry

x(t) # —x(—1) no odd symmetry

(b)
2x143x1+(—1)x1
ap = ) =1.

(c) y(t) = [x(¢t) — ao) has| odd symmetry.
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Exercise 5-5  The RL circuit shown in Fig. E5-5(a) is excited by the square-wave voltage waveform of
Fig. E5-5(b). Determine Vo (7).

R
VWA
| +
s(?) -l_- L Vout(?)
I —
(a)
vs (V)
N
-1 0
—_— 1 (8)
0 1 23 (
_1|'
(b)
Figure ES-5
Solution: From the waveform, we deduce that
21

Ty =125, Wy = — = 7w rad/s, A=1V.
To

Step 1:
From entry #2 in Table 5-4,

n=1
n=odd
Thus,
0 4 [ 90°
co= chp=— = —-90".
0 ’ n i )
Step 2:
Vou(w)  joL
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Step 3:
With @y = 7 rad/s and ¢, = —90°,

Vour(t) = co H(@ = 0) + ¥ ¢, Re{H(w = nay) e/ "> +0)}

n=1
_ i A el _IMOL jonto,)
— nn R+ jnapL

m COS(l’lﬂ't + Gn) V,

with
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Exercise 5-6  For a single rectangular pulse of width 7, what is the spacing Aw between first nulls? If 7 is
very wide, will its frequency spectrum be narrow and peaked or wide and gentle?

Solution: From Fig. 5-13(b), first nulls occur at :|:27” . Hence,

spectrum.

Aw =4rn/t.
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Exercise 5-7  Use the entries in Table 5-6 to determine the Fourier transform of u(—t).

Solution: From Table 5-6,

senlt) = .
1
ut) <> 7r6(a))+j—w.
Also,
sgn(t) = u(t) —u(—t)
Hence,

and the corresponding Fourier transform is

u(—t) <> 7r6(a))+j—w—j—w= né(w)—j—w.
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Exercise 5-8  Verify the Fourier transform expression for entry #10 in Table 5-7.
Solution: o o
J —J
s(cos(an) = (5 ) o

Applying Property 5 in Table 5-7,

| 1
3 el x(t) > 3 X(o — ap),
1ot 1
5¢ x(t) <> 5 X(o+ ay).
Hence, .
x(t)cos(mpt) <> 3 X(w— wp) +X(w+ ay)].
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Determine the voltage across the capacitor, U¢(t), in Fig. 5-20(a) of Example 5-15, for each of

Exercise 5-9
the three voltage waveforms given in the example statement.

Ry
VWA ic(?)

os(?)

~

[\S]

||
1

(a) Time domain

Ry
| vV IC
1
V(@) t R, ::ja)—C
I
(b) w-domain
From Eq. (5.120),
Ic(w)  jO.5Swx1073
Vi(w)  3+jo
Hence, with C = 0.25 mF, .
A Ic((l)) 2 ~
Ve(w) = = V(o).
c(®) joC 3+ jo (@)
(a) vs(t) = 10u(r)
N 10
A\ =107 & —.
s(@) T (w)+ja)
Hence,
. 207 6 () 20
V W)= N + . . )
cl®) 3+jo  joB3+jw)
e 1 [~ 20ré(w) ; 1 20
H=F1V :—/ LYy F |—
velt) [Ve(@)] 2n)-w 3+jo ¢ @+ jo(3+ jo)
10 1 20
=—ult)+F — .
3 1t [J'w(3+jw)]
From entry #7 in Table 5-6,
e u(t) :
a+jo’
Let us define R
20 _F
jo(3+jo)  jo
with 20
Frl=——.
3+ jo
Hence,
fi(r) =20e3 u(r).
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According to property #8 in Table 5-7,

! Fi(o)
t)dt
[mfl( ) hng jo
Hence,
t
3'71 L = / 20@731‘ l/t([) dt
Jjo(3+jo)|  J-w
_ —20 -3t ' _ 20 -3t
—?e 0—?(1 e) )M(t)
Thus,

(b) vs(t) = 102 u(t) V.
v 10

:2+ja)

Y

and
N 2 10 20

W)= . = .
3+jo 24+ jo 3+ jo)(2+ jo)

By partial fraction expansion,

N Aq As
Ve(w) =
c(@) 3tjo  24j0’
with
~ 20
A1l =3+ jw) Ve(w)|. = — = =20,
. 20
Ay =2+ jw) Ve(w)| . = — =20.
2= 24 j0) V(@) n = 5170 |
Hence,
. —20 20
Ve(w) =
c(®@) 310 24j0’
and
ve(t) =20(e ™ —e Y u(r) V
(c) vs(r) = 10+ 5cos4t V.
V(@) =207 §(®) +57[5 (0 —4) +5(w+4)].
Hence,
Ve(0) =~ V(o)
A T3 e
_40n8(0) 10m8(w—4) 107 8(0+4)
3+ jo 3+jo 3+jo
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and

A

velt) = F ' [Ve] = % [ " V() e do

oo jot oo _ jot
_ 20/ (@) ™ da,+5/ o(o—4)e™
—» 3+ jo —oo 3+jw

4 jor
+5/ (0+4)e do
3+]w

20 S5ei4 5o i%
w*(w*w)

2
= 794%200ﬂ4r73690)V
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Exercise 6-1  Convert the following magnitude ratios to dB: (a) 20, (b) 0.03, (c) 6 x 10°.
Solution:
(a) 201og(20) =20 x 1.301 =| 26.02 dB.

(b) 2010g(0.03) = 20 x (—1.523) =| —30.46 dB.

(¢) 201og(6 x 10%) =201log6 +201log 10° = 15.56 + 120 = | 135.56 dB.
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Exercise 6-2  Convert the following dB values to magnitude ratios: (a) 36 dB, (b) —24 dB, (c) —0.5 dB.
Solution:
(a) (10)36/20 =| 63.1.

(b) (10)~2/20 =| 0.063.

(c) (10)703/20 =| 0.94.
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Exercise 6-3  Determine the order of ﬁ(a)) = Vout / V, for the circuit in Fig. E6-3.

C C
|| ||
| Il Il 4
VS t L R Vout
Figure E6-3
Solution: Circuit analysis leads to
j@®’RLC?

H(w) = .
(@) = S Lc— (1= e2LC)(1 5 joRT)

For m very large, such that ®’LC > 1 and @RC > 1,
H(w)~1, o very large.

For @ very small, such that ®*LC < 1 and WRC < 1,
H(w) ~ jo’RLC?.

Hence, | filter is third order.
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Exercise 6-4  Choose values for R; and Ry in the circuit of Fig. 6-16(b) so that the gain magnitude is 10 and
the corner frequency is 10° rad/s, given that Cf = 1 uF.

Solution: According to Eq. (6.51),

Ry
Gip=——=-10
LP Rs )
1 103 rad/
=—= rad/s
Lp RC:
With Cy = 1 uF,
Ry =1kQ, and Ry =100 Q.
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Exercise 6-5  What are the values of the corner frequencies associated with M;, M, and M3 of Example 6-4?

Solution: By plotting the expressions for M, M, and M3 and determining the angular frequencies at which
eachis 1/ V2 of its peak value, we can show that

@, = 10° rad/s, @, =0.64w.,, and @, =0.51a,.

59.5

59

58.5

58

57.5

57

56.5

o (rad/s)

56
10
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Exercise 6-6  Determine the output from a brick-wall lowpass filter with a cutoff frequency of 0.2 Hz, given
that the input is the square wave given by Eq. (6.57).

Solution: This exercise is similar to Example 6-5.
The square wave given by Eq. (6.57) has the Fourier series given by Eq. (6.58):

1 1 1
x(t) = sin(r) + 3 sin(3t) + z sin(5¢) + 5 sin(7¢) 4+,

which has components at frequencies ﬁ =0.16 Hz, % =0.48 Hz, % = 0.80 Hz, etc.
The brick-wall lowpass filter with a cutoff frequency of 0.2 Hz will allow only the first component to pass
through. Hence the output is simply

y(t) = sin(z).
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Exercise 6-7  Determine the output from a brick-wall bandpass filter with f., = 0.2 Hz and f., = 1 Hz, given
that the input is the square wave given by Eq. (6.57).

Solution: This exercise is similar to Example 6-5.
The square wave given by Eq. (6.57) has the Fourier series given by Eq. (6.58):

1 1 1
x(t) = sin(r) + 3 sin(3t) + z sin(5¢) + 5 sin(7¢) 4+,

which has components at ﬁ =0.16 Hz, % = 0.48 Hz, % = 0.80 Hz, % =1.12 Hz, etc.

The brick-wall bandpass filter with cutoff frequencies 0.2 Hz and 1 Hz will allow only the second and third
components to pass through, since 0.16 < 0.2 Hz, 0.2 < 0.48, 0.80 < 1 Hz, and 1.12 > 1 Hz. Hence the output
is simply

y(t) = %sin(?ﬁ) + %sin(St).
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Exercise 6-8  An LTI system has zeros at &+ j3. What sinusoidal signals will it eliminate?

Solution: An LTI system with zeros at + ;3 has a transfer function of the form
H(s) = (s —j3)(s+3) Ho(s)

for some rational function Hy(s).
The frequency response of the system has the form

H(o) = (jo - j3)(jo+3) Ho(o)

for some rational function Ho ().
The response to a general sinusoid of the form x(¢) = Acos(3r + 0) is then

y(t) = A|H(3)|cos(3t + 08 + Z[AH(3)]) =0

because H(3) = 0. Hence, the system will eliminate x(r) = A cos(3¢ + 0) for any values of A or 6.
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Exercise 6-9  An LTI system has poles at —0.1 &+ j4. What sinusoidal signals will it emphasize?
Solution: An LTI system with poles at (—0.1 & j4) has a transfer function of the form

H() (S)

Hs) = G017 ) (s10.1-j4)°

where Hy(s) is some rational function. The frequency response of the system is

o ) Ay (0)
H(0) =H()l—jo = 155 +j(a)+4;)] 0.1+ j(@—4)]

Hence, H(®) wil emphasize any sinusoid x(¢) = A cos(@r + 0) at @ = 4 rad/s.
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Exercise 6-10  Design (specify the transfer function of) a notch filter to reject a 50-Hz sinusoid. The filter’s
impulse response must decay to 0.005 within 6 seconds.

Solution: This exercise is similar to Example 6-7. We have @y = 27 x 50 = 1007 rad/s, but we need to find
a.

The amplitude of the cosine term in Apgch(7) is Ae~*. At = 6 s, we require

o112
A€76a — |:4a2 + a)2:| e76a < 0005
0

Trial and error leads to & = 1 s~! as the solution. Inserting & = 1 s~! and @y = 1007 rad/s gives

208 2s+1

His)=1-— -~ » |- 27
(s) (s+a)>+w? s? +2s+ 98697
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Exercise 6-11 Design a comb filter to eliminate periodic interference with period = 1 ms. Assume that
harmonics above 2 kHz are negligible. Use o = 100 s~ !.

Solution: We need a comb filter that can eliminate 1-kHz and 2-kHz sinusoids. Hence, n = 2, which matches
Eq. (6.80). Upon setting oy = 20007 rad/s and « = 100 s~!, and replacing j with s, Eq. (6.80) becomes

B s? + (20007)? y s> 4 (40007)?
~ s24200s + 10* 4 (20007)2 ~ % +200s + 10* + (40007)2

H(s)
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Exercise 6-12  Where should the poles of a second-order Butterworth lowpass filter be located, if its cutoff
frequency is 3 rad/s?

Solution: Since the order 2 is even, distribute 2(2) = 4 equally spaced poles around the circle of radius 3 rad/s,
symmetrically arranged with respect to both axes. These poles are at {3¢*/43° 3¢*/135°} Discarding the poles
in the right half-plane leaves

poles at {3e*/135°},
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Exercise 6-13  Where should the poles of a third-order Butterworth lowpass filter be located, if its cutoff
frequency is 5 rad/s?

Solution: Since the order 3 is odd, distribute 2(3) = 6 equally spaced pole around the circle of radius 5 rad/s,
starting with 5e¢/°. These poles are at

{561075eij60 7Sei]l20 ,56’]180 }

Discarding the poles in the right half-plane leaves

poles at {—5,5¢%/120°},
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Exercise 6-14  Obtain the transfer function of a resonator filter designed to enhance 5-Hz sinusoids. Use
o=2.

Solution: The transfer function of a resonator filter is

20 + a?
Hissonaor(5) = 1 = Hooen(s) = 70z
0
Inserting @y = 107 rad/s and o = 2 s~ ! gives
4s+4
Hresonator(s) = m )
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Exercise 6-15 Use LabVIEW Module 6.3 to denoise the noisy trumpet signal using a resonator filter,
following Example 6-13. Use a noise level of 0.2.

Solution:
Crigingl signal (Lime domain Original signal (Ney domain) Thresholding
1 1 Resonatcr Filter Butt=rworth filter
> f . T I (Hs)
_ rdarmenlal heguency (He
g . \ . - lllf g 0.01 Arrd=rien
™ ™ ™ _
g ° \\/ J\Jf \' j m\! \\J £ cool- —_— o
a5 “ v o 3[:{}400 GC{] BC{} 10{}-3
1 1E-5- minus real gart of poles
o (.0025 0,005 0 1C00 200C 2000 £000 50C0 To0 o1 oenvoeiv U7
Lirnes (s) Freguszncy (Hed 1312, <0 63 3 103
Nasiy sigral {litne doaimaing Moisy signel (=g dodias) 7, signal |J,/\Jg' e
¥
15 1 T I BN
224567 8010
1 | 01-
05 U ]
% 0 \"k‘fﬁlﬂ ‘l‘ JI'"L w % ool Mg b
£ ‘J £ pool- -
-0.5 '\ ‘P | Nuise l=vel Plav origiral scunf
1 0.0001- T
e I I o % s | [ o |
(]1(]5(] 106 C.1ca 011 0111 0 1000 200C 3000 4000 50C0O 0, 1 Pl o sound
time (s) Frequzncy (Hz) dY NojsY soun
Filtered sigral (time domain) Filtered ;'gﬁal (frequarcy domain) .
275+
0.5- 0.1- Play Millered sorg
.335_\ QK I
(L.01 -
A { A 3
£ b \ 2 oo slop
-0.25- ! ]
05- 0.0001- STCP I
=075 ! I | ! 1E-S .J'
0.1050.106 0.108 0110111 lC(](] 203E 30(](] 4]00 DCO
time (<) Frequzncy (Hz)
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Exercise 6-16 Given 20 signals, each of (two-sided) bandwidth By, = 10 kHz, how much total bandwidth
would be needed to combine them using FDM with SSB modulation and no guard bands between adjacent
signals?

Solution: With SSB modulation, only half of the two-sided bandwidth is used, which in the present case
translates into 5 kHz per signal. For 20 FDM-combined signals with no guard bands between them, the total
bandwidth is

20 x5 kHz =| 100 kHz.
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Exercise 6-17  Figure E6-17 depicts the frequency bands allocated by the U.S. Federal Communications
Commission (FCC) to four AM radio stations. Each band is 8 kHz in extent. Suppose radio station WJR (with
carrier frequency of 760 kHz) were to accidentally transmit a 7-kHz tone, what impact might that have on other
stations? [Even though the four stations are separated by long distances, let us assume they are close to one
another.]

Atlanta Detroit ~ New York  Chicago
WSB WBBM

b

746 | 754 756 | 764 766 | 774 776 | 784
750 760 770 780

Figure E6-17

Solution: After modulation by 760 kHz, the tone has frequencies at:
760 —7 =753 kHz, and 760+7 =767 kHz.
Listeners tuning in to stations at 750 kHz and 770 kHz will hear a tone at 3 kHz, because
753 — 750 =3 kHz, and 767 —770 = —3 kHz.

Remember that frequency bands centered at —750 and —770 kHz are also modulated to baseband, and
—767 — (=770) = 3 kHz.
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Exercise 6-18  What is the Nyquist sampling rate for a signal bandlimited to 5 kHz?

Solution: The Nyquist rate is double the maximum frequency.

2(5kHz) =| 10000 samples/s.
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Exercise 6-19 A 500 Hz sinusoid is sampled at 900 Hz. No anti-alias filter is used. What is the frequency of
the reconstructed sinusoid?

Solution:
The spectrum of the sampled signal has components at frequencies

{£500,-£900 == 500, 1800 & 500, ... } = {4400, +:500, +-1300, +:1400, ...} Hz.

The reconstruction filter is a lowpass filter with cutoff at %(900) =450 Hz.
This leaves components at =400 Hz. The frequency of the reconstructed sinusoid is

400 Hz.
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Exercise 7-1  Determine the duration of {3,1,4,6}.

Solution: In discrete time, the duration of a signal that is zero outside the intervala <n <bisb—a-+ 1.

Here,a = —1,b =2, so the durationisb—a+1=| 4.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 7-2  If the mean value of x[n] is 3, what transformation results in a zero-mean signal?

Solution: The mean of the sum of two signals is the sum of the means.
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Exercise 7-3  Determine the fundamental period and fundamental angular frequency of

3cos(0.56mn+1).

Solution: According to Eq. (7.21),

Hence, select k =7 and| Ny = 25 samples.
Also,

27
Qy=—= 55 rad/sample.
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Exercise 7-4  Compute the fundamental angular frequency of 2cos(5.1wn+1).

Solution: According to Eq. (7.21),
N 2Tk _ 2k _ 20k
7@ " sim 51

Hence, select k =51 and| Ny = 20 samples.

271_271_

Qp="2 22 =
"7 Ny 20

0.1 rad/sample.
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Exercise 7-5  Transform the following equation into the form of an ARMA difference equation:

y[n+2]+2y[n] =3x[n+ 1] +4x[n—1].

Solution: The output y[n] must be a linear combination of y[n — ], x[n] and x[n — i] for i > 0.

Replacing n with n —2 gives| y[n|+2y[n —2] = 3x[n— 1] +4x[n —3].
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Exercise 7-6  Is the system with impulse response

1
h pr—
)= e b
BIBO stable?
Solution: An LTI system is BIBO stable if and only if Y- |k[n]]| is finite.
Here,
> > 1 n?
hln|| = =—.
n;w| 4l ,;O(n+1)2 6

This is finite, so the system | is BIBO stable.
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Exercise 7-7  Is the system with A[n] = (1)" u[n] BIBO stable?

Solution: An LTI system with impulse response i[n| = Cp” u[n] is BIBO stable if and only if |p| < 1, since

Y [l = [C] io'p'" -

n—=—oo

C|
1—|p|

if and only if |p| < 1.

Here, p= 0.5 and |p| =]0.5] < 1, so the system | is BIBO stable.
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Exercise 7-8 A system has an impulse response A[n| = 0 for n < 0 but 4[0] # 0. Is the system causal?
Solution:

y[n] = Zh[i] x[n—i] = h[0] x[n] +A[1] x[n—1] 4 -
i=0
h[0] # 0 means that y[n] depends on x[n] as well as on past values of x[n].
The output of a causal system at time »n can depend on the input at the same time »n and at previous times.

Hence, the system is| causal.
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Exercise 7-9  Compute y[n] = {1,2}%{0,0,3,4}.
Solution: First, note that {1,2} x{3,4} = {(1)(3),(1)(4) + (2)(3),(2)(4)} = {3,10,8}.

Using property #5 with a = —1 and b = 2 gives y[n] =| {0,3,10,8}.
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Exercise 7-10  Compute the z-transform of {1,2}. Put the answer in the form of a rational function.

Solution:

2
Z({12}) =120+ 207 =| 2=
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Exercise 7-11 ~ Compute the z-transform of {1,1} + (—1)" u[n]. Put the answer in the form of a rational
function.

Solution:

Z[{1,1}]=12"+1z ",

VA Z
Z[(—1)" uln]] = =
(V") = =5 =
) ~ z z+1 z 222 +2z+1
ZUL I+ (0 bl =t oy = =t i = g
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Exercise 7-12  Compute Z[n u[n]], given that Z[u[n]] = -%-.
Solution: Using the z-derivative property,

Zin uln]] :—z% [Zfl] _ (z—zl)2 .
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Exercise 7-13  Compute Z[na" u[n]], given that

Solution: Using the z-scaling property,

Znd"un)| = ————5—5 =
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Exercise 7-14  Compute the inverse z-transform of (z+3)/(z+1).

Solution:
z-+3 2
=14 —
z+1 z+1
_1lz+3 . —1 2 _ _1\n—1 _
zZ [HJ_Z [1]+Z LH]_ 8] +2(=1)""" un —1].
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Exercise 7-15  Compute the inverse z-transform of 1/[(z+1)(z+2)].

Solution: The partial fraction expansion is

1 1 1

(z+1)(z+2) z+1 z+2°

The inverse z-transform is then | (—1)""' u[n—1]— (=2)" "' uln—1].
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Exercise 7-16  Use z-transforms to compute the zero-input response of the system
y[n] —2y[n — 1] = 3x[n] + 4x[n — 1]

with initial condition y[—1] = 1 .

Solution: Zero-input response means x[n] = x[n — 1] = 0. Hence, the system equation reduces to

y[n] —2y[n—1]=0.

Transferring to the z-domain:

Hence,

z 2
2
Yz) [1-2]| =1
@ -2 =1,
1 z
Y(z) = =3
1—-=2
z

From Table 7-5,
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Exercise 7-17 A system is described by

y|n] —Zy[n— 1]+%y[n—2] = x[n]+2x[n—1].

Compute its transfer function.

Solution: Taking the z-transform gives

Y(2) [1 ENS lz—Z] —X(z) [1 4227,

4 8
Hence,
Y(z) 1+2z7! 72 7> +2z
H(Z)ZX(Z):I 3.1, 1 _2?: 2 3 1
— ZZ + gz 7° — 7 7+ 3
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Exercise 7-18 A system is described by

y|n] —Zy[n— 1]+%y[n—2] = x[n]+2x[n—1].

Determine its poles and zeroz and whether or not it is BIBO stable.

Solution: Taking the z-transform gives

Y(2) [1 _ %z_l + ;z*] —X(z)[1 4227,

Hence,

z Z_] Z2 Z2 z 7— z
RN (C) 142 +22 _ (2-0)(2+2)

X(z) 1—%1*1—%%2*2;2: 2-3z+%f (z-He-1

The system has| zeros {0,—2} |and| poles {3,1}. | Note that [3| < 1 and || < I.

Since both poles are inside the unit circle, the system | is BIBO stable.
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Exercise 7-19  Compute the response of the system y[n] = x[n] — x[n — 2] to input x[n] = cos(nn/4).

Solution: Take the z-transform:
Y(z) =X(z)— 722 X(z)=[1- z’2] X(z).

The transfer function is
Hz) = ——=1-z"2.

Substituting z = ¢/ gives the frequency response function
H(e™®) =1—-e 2.
Substituting Q = T gives

H(e™ Y =1—e 2 =1—(—j)=1+j=V2e"*,

T
The response of the system to x[n] is| 1.414cos (Zn + Z)
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Exercise 7-20  An LTI system has H(e/??) = jtan(Q). Compute the difference equation.
Solution: We need to write H(e/®*) as a function of ¢/, not just of Q.
Using the definitions . _

2¢0s(Q) = e/ /¢
and , .

2jsin(Q) = e/ — e /2,
gives , .

_ 2jsin(Q) e/ —e /0

H(e/?) = jtan(Q) = =— .
(/%) = jtan(%) 2c08(Q) R4 i0

Substituting ¢/ = z gives the transfer function

H(z) = z—z 'z 1-z27 Y(z)
Cztz izl 14z X(z)

Cross-multiplying gives
Y(z)[14+2 % =X(z) [1—z?].

An inverse z-transform gives | y[n]+y[n — 2] = x[n] —x[n —2].
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Exercise 7-21  Compute the DTFS of 4cos(0.15tn+1).
Solution: According to Eq. (7.136a), the DTFS representation is given by

— Z XkejZTan/No’ (01)

where we used the relationship Qy = 27/Ny. Our goal is to find the values of x;, which we can we do by
applying Eq. (7.136b) or by comparing Eq. (1) with the given sinusoid after expressing the latter in terms of
complex exponentials. The second approach entails writing x[n] as

x[n] = 4cos(0.15tn+ 1)

—dcos (22 ) n+1)
— 2cos [eHCrlE)rH1) 1 ¢ s(an( i)

— 2¢/1e27(@)n _|_2€—jle*j27f(%0)nej27r
— 2ei1p127( )0 4 il gi2n(1=35)n

3

— 2e/1e27(@)n 4 =il pi2n(5)n, 0.2)

We surmise from the expression for x[n] that Ny = 40 samples. Comparison of the two terms in Eq. (2) with
the summation in Eq. (1) leads to the conclusion that the first term corresponds to kK = 3 and the second term
corresponds to kK = 37. Hence,

X3 = 2€j1, X37 = Zeijl,

and all other terms for £ = 0 to 39 are zero.
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Exercise 7-22  Confirm Parseval’s rule for the above exercise.

Solution: Parseval’s theorem states that the average power of a periodic signal is the same whether it is

computed in the time domain or in the frequency (DTFS) domain.

Time domain: The average power of the periodic sinusoid is 5 = 8.

Frequency domain: The average powers of the two periodic complex exponentials are

Hence, the average powers are identical.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,
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Exercise 7-23 ~ Compute the DTFT of 4cos(0.15zn+ 1).
Solution: According to entry #6 in Table 7-8, the DTFT of A cos(Qon+ 0) is

Ame’® §((Q—Qp)) +Ame ® §((Q+Qy)),

where

(=)= Y 8(Q+2mk—Q)
k=—c0
is a chain of impulses in Q.
Note that the DTFT of any signal is always periodic in Q with period 27.
Here,A =4, Qy =0.157, 6 =1, so the DTFT is

47’ §((w0 —0.15)) +4me /' §((w +0.15)).
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Exercise 7-24 ~ Compute the inverse DTFT of

4cos(2Q) +6¢0s(Q) + j8sin(2Q) + j2sin(Q).

Solution: We need to write this function X(e/?) in terms of ¢/, not just of Q.
Using the definitions . _
2¢0s(Q) = e/ 4 ¢7/¢

and ' ‘
2jsin(Q) = ¢/ — ¢/
gives ‘ ‘ ‘ . ‘ . ‘ A .
X(e/?) = 26722 12772 4 3672 4 3L 4 [4e/*? — 46722 4 [/ — 79,

Summing terms, ' . . ' _
X(e/?) = 66/ + 4e 4207 207,

The DTFT is

X(e®) = Y xfn] e,

n—=-—oo

so we can read off | {6,4,0,2, —2}.
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Exercise 7-25  Compute the 4-point DFT of {4,3,2,1}.
Solution: The Ny-point DFT is

No—1 .
= Y xn] e 2N fork=0,1,...,No— 1

Here, Ny = 4, and e~ /2%"%/* = (— j)"™ for k =0,1,2,3.

Hence,
Xo = x[0](1) +x[1](1) +x[2] (1) +x[3](1) =4 +3+2+1 = 10,
X =x[0](1) +x[1](—=j) +x[2](=1) +x[3](j) =4—j3 -2+ j1 =2—j2,
Xo = x[0](1) +x[1](—=1) +x[2](1) +x[3](—-1) =4—-3+2—-1=2,
X3 = x[0](1) +x[1] (/) +x[2](=1) +x[3](=j) =4+ /3 -2—jl =2+ 2.

Since x[n] is real-valued, we could also have used X3 = XJ.

The DFTis| {10,(2—,2),2,(2+42)}. [Check: £ft ([4 3 2 1]) gives the same answer.
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Exercise 7-26  How many MADs are needed to compute a 4096-point DFT using the FFT?
Solution: %% log, (4096) = 24576.
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Exercise 7-27  Using the decimation-in-frequency FFT, which values of the 8-point DFT of a signal of the
form {a,b,c,d, e, f,g,h} do not have a factor of v/2 in them?

Solution: In the decimation-in-frequency FFT, the twiddle multiplications only affect the odd-valued indices.
So {Xy,X2,X4,Xs} do not have a factor of /2 in them.
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Exercise 7-28  Using the decimation-in-time FFT, show that only two values of the 8-point DFT of a signal
of the form {a,b,a,b,a,b,a,b} are nonzero.

Solution: In the decimation-in-time FFT, 4-point DFTs of {a,a,a,a} and {b,b,b,b} are computed. These are
both zero except for the dc (k = 0) values. So the 8-point DFT has only two nonzero values Xy = 4a + 4b and

Xy = 4a—4b.
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Exercise 8-1  Obtain the transfer function of a BIBO-stable, discrete-time lowpass filter consisting of a single
pole and a single zero, given that the zero is on the unit circle, the pole is at a location within 0.001 from the
unit circle, and the dc gain at Q =01is 1.

Solution: A zero at ¢/% produces a dip in the magnitude |[H(e/?)| at Q = Q. A pole at ae/* produces a peak
in the magnitude |H(e/*)| at Q = Qq, where a =~ 1, but a < 1 is needed to make the system BIBO stable.

The lowpass filter should reject the highest discrete-time fundamental frequency € = 7, and pass the lowest
discrete-time fundamental frequency Q = 0 (dc) with H(e/%) = 1. So it should have a zero at ¢/* = —1 and a
pole at e’ = a, fora~1and a < 1.

Using a = 0.999 gives

z+1
H(z)=C ——— .
() =€ —099%
Also, .
j +
1 =H(") =H(1)=C =555
Solving for C gives C = 0.0005. Hence,
z+1
H(z) =0. _—
(z) =0.0005 27— 0999
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Exercise 8-2  Use LabVIEW Module 8.1 to replicate the result of Section 8-1.2 and produce Fig. 8-3.
Solution:

Magnitude

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 8-3  Use LabVIEW Module 8.1 to replicate Example 8-1 and produce Fig. 8-4.
Solution:

Magnitudz
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Exercise 8-4  Determine the ARMA difference equation for the notch filter that rejects a 250 Hz sinusoid.
The sampling rate is 1000 samples per second. Use a = 0.99.

Solution: The discrete-time frequency to be rejected is

The notch filter should have zeros at e=/%/2 and poles at ae™/*/? = 0.99¢+/7/2,
The transfer function:
H(z) = (z— e/™/?)(z— e 17/?) 22+ i_ 1+z72 Y(2)
~ (2—0.99¢i7/2)(2—0.99¢=i7/2) 224098272 1409822 X(z)

Cross-multiplying gives
Y(z)(140.98272) = X(z)(1 +z ).

The inverse z-transform is

y[n] +0.98y[n — 2] = x[n] + x[n — 2]

Note that —2 cos (27r %) =0.
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Exercise 8-5  Use LabVIEW Module 8.1 to replicate Example 8-2 and produce the pole-zero and gain plots
of Fig. 8-9(a).

Solution:

Magnitudz
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Exercise 8-6
Fig. 8-8.

Solution:

Original signal (time domain)

250 a0
30 32 34 36 38 40 42 44 46 43 50

Original signal (freq domain)

1.2

PN
EW"M'M'HWW' ” WH‘M.

!
-1 -0.5 0 05 1
discrete-time frequency (radians/sample/pi)

signal W filter WI

samples
Filtered signal (time domain) Filtered signal (freq domain)
2 1.2 ‘ﬁ‘ \ﬂ‘
|
[ d1C)
h o= e ] v I\O"U'J ‘fl"w '“‘I N
n § o s 01 Al T 11 B
s o = 2 ,,In.wl-l“'“ .I "I‘ I“Wl"l”|"ﬂ‘
- W ! 5 - I”Il |“ i
h ki i 2 0.01- l ’ |
-1=h ot a”
=24 0.001— . '

R
30 32 34 36 38 40 42 44 46 48 30
samples

1 I
-1 -0.5 0 0.5 1
discrete-time frequency (radians/sample/pi)

f1 (Hz)
L v

T |
100 200 300
notch frequency (Hz)
.
e
100 200 300
2 (Hz)

L ____ ¥ ]
]
100 200 300
pole radius

05 06 08 039

stop
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Use LabVIEW Module 8.2 to replicate Example 8-2 and produce the time waveforms of

sampling rate=1000 samples/second

Paole-Zero Plot

Im{z}

unit circle ’:
,,’T

Zeros

poles

[~

1.2
1.0

0.5

0.07)

-0.57

~1.0+
=1.2+

Eat




Exercise 8-7  Use LabVIEW Module 8.3 to replicate Example 8-4 and produce the time waveforms of
Fig. 8-12 (as stem plots).

Solution:

Original signal (time domain)

0.6 1
[}
0.4- =} 01 c.8-
0.2+ ] 0.6-]
o , i E 0.01] 3y ca
o = 3
= Ii ul ‘g?‘ 0,001 =
-0.2- el B
o
04— ‘ﬁé‘j 0.0001-
-06 | 1 I I 1 1 1E-5 1 1 '0-2_| 1 I 1 1 I I 1 1 1
0 20 40 60 80 00 0 0.5 1 0 5 10 15 20 25 30 35 40 45 ¢
samples discrete-time frequency (radians/sample/pi) samples

Original signal (freq domain)

Filter impulse (time domain)

1-

Signal + interference (time domain)

signal [~ filter [

Signal + interference (freq)

L ' \f Interference level Play original sound
=
.1
3 ﬁﬁ% " 0. R R ok
057 & ] 2} -] 0 a5 1
2 . o rél ﬁ ) E 0.01 f
o = a a |
= ‘:ll_i it & 2 0.001 “ notch frequency (Hz) Play noisy sound
sl 1M i . ¥
-0.5~ o §
-1 600 1000 1500 2000
il ! ! ! iy, ! ! Interference frequency(Hz) -
0 20 40 &0 80 100 0 0z v4 0e 08 1 AUENCYIRZ) play filtered sound
samples discrete-time frequency (radians/sample/pi) N e i
Filtered signal (time domain) Filtered signal (freq demain) 600 1000 1500 2000
0.6- 1] pole radius oy
04- dh _
| @ 0.1 I K] sToP
= w 0.5 0.6 0.8 0.9%9
0z u
E = W 3 001
E 4
2" bWy 5
e ??J o Eé‘ i S 0.0017 sampling rate=44100 samples/second |
Ej= T i
rys 3 00001
-0.6-) 1 I | 1 1 1E-57 1 I ] ] 1
0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1
samples discrete-time frequency (radians/sample/pi)
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Exercise 8-8  Determine the ARMA difference equation for a comb filter that rejects periodic interference
that has period = 0.01 s and is bandlimited to 200 Hz. The sampling rate is 600 samples per second. Use
a=0.99.

Solution: Periodic interference with period = 0.01 s has a continuous-time Fourier series expansion with
harmonics at multiples of 100 Hz. Since the interference is bandlimited to 200 Hz, the interference has

harmonics at 100 Hz and 200 Hz. Discrete-time frequencies to be rejected: 27 % =% and 27 % = 27”

The comb filter should have zeros at e¢™/®/3 and ¢*/2%/3 and poles at ae™/®/3 = 0.99¢=/7/3 and
aeij2ﬂ:/3 _ O.99€ij2ﬂ/3.

The transfer function is

(Z _ ejn/B)(Z_ efjn:/3)(z_ej2n/3)(z _ efj27r/3)

H(z) = : : : :
@) (z—0.99¢/7/3)(z— 0.99¢—i%/3) (2 — 0.99¢/2%/3) (z — 0.99¢—12%/3) °

which simplifies to

H(z) 21 1+z 24274 Y(z)
Z) = _— =
z2*+0.9822+096z % 140982 2+0.96z* X(z)’
since _ .
(z— ™z —e T3 =g —2cos(n/3)z+1=2>—2+]1,
and

(z—e/?3)(z— e 7273) = 22 —2cos(2m/3)z+1 = 2> +z+ 1.

Cross-multiplying gives
Y(z) (140982240962 %) =X(z) (1+z >4z %).

The inverse z-transform is

y[n] +0.98y[n — 2] +0.96y[n — 4] = x[n] + x[n — 2| 4+ x[n — 4]

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 8-9

Use LabVIEW Module 8.4 to replicate Example 8-5 and produce the pole-zero and gain plots

of Fig. 8-13 and time waveforms of Fig. 8-14.

Solution:

Original signal {time domain}

Original signal (freq dorsiginal W filter W I

3 1.2
2_
Soll. o W’ T :
s ol l. ? i R =
S RRTRIE
_1_
-2+ | ! | | 0.001- I I ! ! !
80 85 90 95 100 (0] 50 100 150 200 250
time (s) Frequency (Hz)
Filtered signal (time domain) Filtered (freg domain)
3 12-
2_
0.1
£ .11 I W‘g\w/\‘/““
© ©
= 0- =
0 wmw ‘ 001+
_1,
-2+ | | | . 0.001- ! ' ! ! !
80 85 90 95 100 0 50 100 150 200 250
time (s Frequency (Hz)
f=30Hz

unit circ ’_

Zeros ’.'T
Fole-Zero Plot poles ’(_"-
12+
10 @
04 X
0.5+
N
E 0.0 hos]
,0.5_
& %
-1.0- %
-1.2- ! | | "
=L -0.5 0.0 05 1.2
Refz}
stop

# of interference
interference frequency
. —

40 50 60 70 80
minus real part of
.
0506 08 099

STOP
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Exercise 8-10  Is deconvolution using real-time signal processing possible for the system: y[n] = x[n] — 2x[n—1]?
Solution: Taking the z-transform gives
Y(z) =X(z) -2z ' X(z) = (1-22"") X(2).
The transfer function is
Y(z) 1 z  z
X(z) 1-2z'z z-2°

The system has a zero at 2, and |2| > 1, so it is not minimum phase.

H(z) =

The inverse system is not BIBO stable, so real-time deconvolution is| not |possible.
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Exercise 8-11 A system is given by y[n] = x[n] — 0.5x[n — 1] 4+ 0.4x[n — 2]. What is the difference equation
of its inverse system?

Solution: The z-transform is
Y(z) = X(z) — 0.5z X(2) 4+ 0.4z 2 X(z) = (1 - 0.5z +0.422) X(z).
The transfer function is

Y(z) 1 7’ 7’

H — — —_— = .
() = X)) " 1=052 704222 2-052104

The poles are the roots of denominator z> — 0.5z + 0.4 = 0, which are {0.25 + j0.581}. Since
|0.25 4 j0.581| = 0.6325 < 1, the system is minimum phase, and thus it is invertible.
The inverse system is the original system rearranged to

x[n] = y[n] +0.5x[n — 1] — 0.4x[n — 2]
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Exercise 8-12  Use LabVIEW Module 8.7 to replicate Example 8-18 and produce the time waveforms and
spectra of Fig. 8-18. Note that the dc component is larger.

Solution:
Moisy signal (time domain} Moisy signal (frequency domain)
30- 100-
20- -
@ 10- @ ?
w O s 17
= =
o 014 SNR (dEB)
2 T T T 3.669(
'3G_| 1 1 1 1 1 001- 1 1 1 1 1 1 1 1 I
0 02 04 06 08 1 0 25 5 75 1012515175 20 noise level
samples frequency (Hz) .
Filted signal (time domain) Filtered signal (frequency domain) o1 2 45
Bl Ly threshold
.
10_ |-'-'|"".|
i q, 001 05 1
2 0 5 10- stop
> >
-10- STOP
'20_| 1 1 1 1 1 1- 1 I 1 1
0 02 04 06 08 1 0 5 10 15 20
samples frequency (Hz)
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Exercise 8-13  Use LabVIEW Module 8.8 to replicate Example 8-20 and produce the time waveforms and
spectra of Fig. 8-20. The time waveforms are different.

Solution:
Original signal (time dcmain) Original signal (frequency domair)
1= 2.1
0.5- 001
@ /'\ - @
5 o / VARVAZ B R A note = 440 Hz
-0.5- 0.0001 B note = 491 Hz
1=} I ! ! LE=5=) | | I i i
0.0226757 0.024 0.026 0.02?181 o 1000 2000 3030 4000 5000 fundamental rejection frequncy
time (5) Freguency (Hz] . S
Filtered signal (time domain) Filtzred (frequency domain) NN
400 430 S0
1- 21 L
Play eriginal sound
& g /\\/ v\, 8 i May filtered sound
'1_| 1 1 1 1E-5 1 1 1 1 STOp
00226757 0.024 0.026 0.02?131 1 1000 2000 3000 4000 5000 “TOP
time () Freyuency (He
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Exercise 8-14  The spectrum of {cos(0.3wn), n=0,...,N — 1} is to be computed using the DFT. For what
values of N will there be no spectral leakage?

Solution: N must be an integer multiple of the period of cos(0.37n), which is found from % = 23—0 = the

period is the numerator 20.| N = integer multiple of 20
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Exercise 9-1  Compute the coefficients of a 5-point (a) Bartlett window and (b) Hamming window.

Solution: (a) {0,1,1,1,0},
(b) {0.08,0.54,1.00,0.54,0.08 }.
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Exercise 9-2  What would the spectrogram of cos(¢?) look like?

Solution: A parabola, since the instantaneous frequency is

1 df* 3
f: _— t2'
2r dt 27
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Exercise 9-3  Use LabVIEW Module 9.2 to display the spectrogram of “The Victors.” Choose the window
length so that the notes do not overlap in time.

Solution:

Window length
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Exercise 9-4  Use LabVIEW Module 9.3 to display the spectrogram of a chirp with slope 1.0 using window

length 32.
Solution:
Chirp signal Plot 0 W
) NI
0.5+
§ Chirp slope
| I 1
<L
e Window length
1- Jan L
= 1 1 1 | 1 1 | 1 | 1 1 15 30 40 50 54
0 1 2 3 4 5 6 7 8 9 10
Time [. Stop ]
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Exercise 9-5  Design a differentiator of length 3 using a rectangular data window. Interpret your answer.

Solution: Ajn] = {1,0,—1} becomes
Y] = x[n+1] —xfn—1],

which is a difference operator.
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Exercise 9-6  Using the continuous-time filter
ha(t) = 8(¢) — 3¢ u(r)

and Ty = 2, design a discrete-time filter using impulse invariance.

Solution: The impulse is just feedthrough.
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Exercise 9-7  Using the continuous-time filter Hy(s) =s/(s+ 1) and T = 2, design a discrete-time filter
using bilinear transformation.

2z—1

Solution: Setting s = 57+ in Hu(s) gives

 (2-1)/(z+1)
M) = o0/
z—1

1 _
Tt )+@-1) 2 (1=z7").

So hln] = {%, —%} is actually FIR here!
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Exercise 9-8 ~ We wish to design an IIR discrete-time lowpass filter with cutoff frequency Qo = 7 using
bilinear transformation with 7' = 0.001. Determine the continuous-time lowpass filter cutoff frequency w.

T 2 0001 2
=20

— 2000t ( )
an 4

Solution:

00.

Fawwaz Ulaby, Andrew Yagle, Signals and Systems: Theory and Applications,



Exercise 9-9  Using bilinear transformation with 7 = 0.1, the continuous-time frequency @ = 20 maps to

what discrete-time frequency?
2 Q Q
O0=w O.Itan<2> tan<2>

- Q=_.

Solution:

YRS
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Exercise 9-10  Use bilinear transformation with 7 = 2 to design an IIR ideal differentiator.

Solution: From Chapter 3, H,(s)=s, s = %;—} So
H(z) — z—1 _ Y(z)
z+1  X(z)

yln]+yln = 1] = x[n] —x[n —1].
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Exercise 9-11  cos(0.6wn) = 3| = 2

Solution: cos(0.67n). @ = 0.6 becomes @ = 1.87, which aliases to @ = 0.2, since 1.87 = —0.27 = 0.27.
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Exercise 9-12  cos(0.87wn) = 4 =» 2

Solution: cos(0.87n). @ = 0.87 becomes w = 3.2, which aliases to @ = 0.87, since 3.27x = —0.87 = 0.87.
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Exercise 9-13  cos(0.4zn) =9 14| =» ?

Solution: w = {0.4xn,(2—0.4)n,(2+0.4)7, (4 —0.4)7} become
® =1{0.17,0.47,0.67,0.97}.

The input was a single sinusoid, but the output is four sinusoids.
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Exercise 9-14  cos(0.8wn) =9 14| =» ?
Solution: w = {0.87,(2—-0.8)x,(2+0.8)7, (4 —0.8)7} become

0 =1{0.27,0.37,0.77,0.87}.

The input was a single sinusoid, but the output is four sinusoids.
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Exercise 9-15
noise level 1.

Solution:

Use LabVIEW Module 9.4 to estimate the period of the waveform with period 0.005 and

Period Moise level

Q002  0.005 0008

Autocorrelation

STOP

Plot0 [/

J00-
500-

250~

Amplitude

0.004
Time

0,002

0.008 0.009

Plot 0 W

0.006

= M
I I

Amplitude

1
[
|

i
_I

0.02
Time

0.01

=

0.03 0.04 0.05
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Exercise 9-16  Use LabVIEW Module 9.5 to estimate the time delay of the signal when its actual delay is
0.3 and the noise level is 1.

Solution:

Delay MNaise level

‘- ‘- STOP

| | | |
01 02 03 04 L0 05 1 15

Cross-correlation Plot 0 W

70- " 1
60-
50-
40-
20-
20-
10-
U_
_1[}_
-20- | | | | | I 1 I | I
0 005 01 015 02 025 03 035 04 045 05

Time

-

Amplitude

Signals Delayed noisy signal |;'"\J Signal ’K

Amplitude
T

N |I.l|| wll I j‘l.' h."-”.'.-ll _I '.'--l. il m I Wl sl
|l| |r'|‘ i 'l'| I|”|| l1' | | l |

1] g0s 01 015 02 025 03 035 04 045 05
Time
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Exercise 10-1 Use LabVIEW Module 10.1 to show the effect of drastic lowpass filtering on the letters
image. Set both slides to their minimum values.

Solution:

MATLAB index K1 (cutoff frequency=2*pi*K1/256)

M 20 30 40 50 60 70 80 90 100 J

MATLAB index K2 (cutoff frequency=2*pi*K2/256)

Spectrum of filtered image

256= b=

q0-

200- a0-
¢

g 70-

_E 150

% 60~

— 100- 50—
=x
=

40-

30-

0-] I I I I I 20-

0 50 100 150 200 256
I MATLAB index K1 10— 3

Filtered image

EWSXN
EWSXMP
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Exercise 10-2
0.5, L to 5, and noise level to 100.

Solution:

QOriginal image

Original image spectrum

2562

; P
g8 3

MATLAB index K2
E

ioal
T

o
1
= —

I 1 | |
20 100 130 200 2536

MATLAB index K1

Moisy image spectrum

Filtered image

EWSX

[ WS X M
FEWSXMP

2562

MATLAB index K2

| 1 | |
0 20 100 130 200 2536

MATLAB index K1

Filtered image spectrum

2562

;

o
=

MATLAB index K2
E

1 | |
0 20 100 130 200 2536

MATLAB index K1
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Use LabVIEW Module 10.2 to denoise the letters image using a lowpass filter. Set “K” to

Moise level

5

1 1 1 1 1
75 100

Hamming window length L

=1

1 [ [ 1
5 10 15 20 25 30

Cutoff frequency/{pif2)=K

| | |
[0.01 0.5 1

-

. Stop




Exercise 10-3  Use LabVIEW Module 10.3 to deconvolve the letters image from a noisy blurred version of
it. Set the noise level to 1000 and L to 1.

Solution:

Original image spectrum

256z

EWS X[

E‘ \R’v S X h 100-
EWSXMP L

Moisy image Moisy image spectrum

Original image

| |
0 50 100 150 200 256

— ,

025 50 75 100
L

S —
5 1015 2025 30
K (*pi/2)

¢ 50 100 150 200 256
Kl N Stop
Filtered image spectrum ;

Filtered image

E W S:X

E.W. S XM

B Wol XM ¥ "5 so 100 130 200 25

Kl
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Exercise 10-4  Show that g, [11] and A, 1] are energy-normalized functions.

Solution: From Eq. (10.68) we have

(V2P +(1/V27? = (1/V2) + (-1/V2)* = 1.
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Exercise 10-5  Show that 2~ = 37 for Eq. (10.89).
Solution: The product .7 = I; hence T = 5.
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Exercise 10-6 Show that the normalized Haar scaling function g, [n] in Eq. (10.68) satisfies the Smith-
Barnwell condition given by Eq. (10.113).

Solution: From Eq. (10.57a) we have

|Ghaar(ejw)‘ - ‘(1 +ei'iw)/\/§’
= V2|cos(@/2)| - e~/
=V2|cos(w/2)|

and | Ghaar(e/(97%))| = /2| —sin(@/2)|. Then

1G(e7®))? + |G (/T2 = 2cos?(0/2) + 2sin’(w/2) = 2.
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Exercise 10-7  Show that Eq. (10.109) with L = 1 holds for the normalized Haar scaling and wavelet basis
functions in Eq. (10.68).

Solution: gpaa[n] = [1,1]/v/2 implies (—1)" g[1 —n] = [1, —1]/v/2 = hpaar[n].
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Exercise 10-8  Show that if g[n| satisfies the Smith-Barnwell condition and h[n] is determined from gn]
using Eq. (10.109), then h[n] satisfies the Smith-Barnwell condition.

Solution: Scaling function g[n] satisfies the Smith-Barnwell condition Eq. (10.108) if its z-transform G(z)
satisfies G(z) G(1/z) + G(—z) G(—1/z) = 2.

The wavelet function h[n| is determined from the scaling function g[n] using Eq. (10.109), which is
hin] = (=1)" g[L — n]. The z-transform of Eq. (10.109) is Eq. (10.102), which is H(z) = —G(—1/z) z L.
Replacing z with 1/z gives Eq. (10.103), which is H(1/z) = —G(—z) z', and replacing z with —z in
Eq. (10.102) gives Eq. (10.105), which is H(—z) = G(1/z) z L, since L is odd. Replacing z with 1/z gives
(new) H(—1/z) = G(z) z", again since L is odd.

Using all of these gives

H(z) H(1/z) = G(—z )G(—1/z)

and
H(—z) H(—1/z) = G(1/z) G(z).

Note that z'z~ £ = 1. So
H(z) H(1/z)+ H(—z) H(—1/z) = G(—2z) G(—1/z) + G(1/z) G(z) =2,

so H(z), as well as G(z), satisfies the Smith-Barnwell condition.
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Exercise 10-9 Show that D1 Daubechies scaling function g[n| is the normalized Haar scaling function
ghaar[n]-
Solution: Eq. (10.39) is Ghaar(z) = (1 +2z")Q for constant Q. Inserting into Eq. (10.140) gives Q = %
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Exercise 10-10  Show that D1 Daubechies scaling function g[n] is orthogonal to even-valued translations of
glnl.
Solution: From Table #1,

Y gln] gln+2] = g[0] g[2] +¢[1] g[3]
= (.4830)(.2241) + (.8365)(—.1294) = 0.

Y g[n] g[n+4] = 0 since g[n] has duration 4. k[n] is also orthogonal to even-valued translations.
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Exercise 10-11 ~ Show that a system with two zeros at z = 1 compresses signals linear in time n to zero.

Solution: If H(z) has two zeros at z = 1, it must have the form
H(z) = (z—1)’P(z) = (2 —2z+1) P(z).
Let x[n] = an+ b for constants a and b.

x[n] xh[n] = x[n] *{1,-2,1} % p[n]
= (xfn+2] — 2xfn+ 1]+ 3[a]) ]
=0x%p[n] =0

since we have

x[n+2]=2x[n+1]+x[n] = (a(n+2)+b) —2(a(n+1) +b) + (an+b) = 0.
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Exercise 10-12 Show that for separable 2-D scaling and wavelet functions, the 2-D Smith-Barnwell
condition Eq. (10.159) is satisfied if the 1-D Smith-Barnwell condition given by Eq. (10.113) is satisfied.

Solution: Inserting Eq. (10.160) into Eq. (10.159) gives
(/™) G(e/™) P +|G(e/+7)) Ge/ @) 2
+[G(O) G ™)+ |G(e™) Gl ) P
= (I6(e™) 2+ |G (@) ) |G (i) [
+ (16 + G )P (Gl )P

=2|G(e/”)? +2|G(/ @+ )2 = 4.
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Exercise 10-13  Use LabVIEW Module 10.5 to compress and then decompress the clown image. Use a
threshold of 0.5. What compression ratio does this produce?

Solution: 52.1512.
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Exercise 10-14  Use LabVIEW Module 10.6 to denoise the clown image. Use a noise level of 0.2 and
threshold of 1. Discuss the result.

Solution:

Original image Noisy image

Reconstructed image D3 wavelet transform

Compressmn ratm Threshold
.
|543293
! Dr[\]ll 0.25 0.75 1

[ ) oise level
B Stop G

L 4 L L O ) O O R B B |

0 005 01 01> 02
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Exercise 10-15  Use LabVIEW Module 10.7 to inpaint the clown image. Use lambda = 0.01, missing pixel

threshold = 140, and max iterations = 500.

Solution:

Original image

Known pixel percentage

) 61.805
[terations

Max iterations

.

1 100 200 300 400 500
Missing pixel threshold

100 120 140 180 180 200
lambda

0.001 0025 005 0075 01
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Exercise B-1  Express the following complex functions in polar form:
), = (4 - j3)2a
7= (4—j3)1%

Solution:
21 = (4-j3)
— [\/m —jtan~ 3/4] = (5 I3687T°)2 — 957374
n=(4-)3)'"

[ 42 4 32 o Jjtan” 13/4} 12

/5B
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Exercise B-2  Show that v/2j = +(1 + j).

Solution:
2] =V2e9
= +/2 e
cos45° + jsin45°
=+V2
AR

=+2 (ﬂzjﬁ) =+(1+)).
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