

Example 8-21: DFT Computation of Fourier series.

**Purpose:**

At a sampling rate of 50 sample/s, the number of samples generated by a periodic signal with period  $T_0 = 0.2$  s and  $f_{\max} = 25$  Hz is  $N = f_s T_0 = 50 \times 0.2 = 10$  samples. Compute the Fourier-series coefficients of  $x(t)$ , given its sampled values:  $\{9, 0.117, -5.195, 1.859, 11.53, 9, -4.585, -12.8, -5.75, 6.827\}$ .

**Inputs:**

X=samples of one period of signal.

fs=sampling rate in sample per s.

**Outputs:**

Line spectrum of  $x(t)$  computed using DFT.

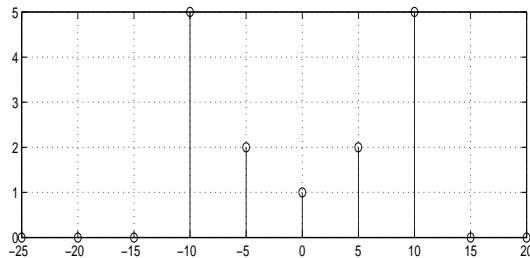



Figure 1: DFT-computed line spectrum.

**Comments:**

- A stem plot is used since the spectrum is computed only at discrete points.
- **fftshift** is used to shift dc ( $\Omega=0$ ) to the middle of the two-sided spectrum.

**Program:**

```
clear;fs=50;P=0.2;
t=[0:1/fs:P-1/fs];L=P*fs;
X=1+4*sin(2*pi*5*t);
X=X+10*cos(2*pi*10*t+0.6435);
f=[-(L/2):(L/2-1)]*fs/L;
FX=fft(X)/L;subplot(211),
stem(f,fftshift(abs(FX))),grid on
```